You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							273 lines
						
					
					
						
							11 KiB
						
					
					
				
			
		
		
	
	
							273 lines
						
					
					
						
							11 KiB
						
					
					
				/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
#include "paddle/fluid/framework/op_registry.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
class ReshapeOp : public framework::OperatorWithKernel {
 | 
						|
 public:
 | 
						|
  ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
 | 
						|
            const framework::VariableNameMap &outputs,
 | 
						|
            const framework::AttributeMap &attrs)
 | 
						|
      : OperatorWithKernel(type, inputs, outputs, attrs) {}
 | 
						|
 | 
						|
  void InferShape(framework::InferShapeContext *ctx) const override {
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput("X"),
 | 
						|
                   "Input(X) of ReshapeOp should not be null.");
 | 
						|
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
 | 
						|
                   "Output(Out) of ReshapeOp should not be null.");
 | 
						|
 | 
						|
    const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");
 | 
						|
    PADDLE_ENFORCE(!shape.empty(),
 | 
						|
                   "The shape information must be set by Attr(shape).");
 | 
						|
 | 
						|
    if (ctx->HasInput("Shape") && ctx->IsRuntime()) {
 | 
						|
      // If true, set the shape of Output(Out) according to Input(Shape) in
 | 
						|
      // ReshapeKernel with ExecutionContext. Also check LoD in ReshapeKernel.
 | 
						|
      ctx->ShareLoD("X", /*->*/ "Out");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    auto x_dims = ctx->GetInputDim("X");
 | 
						|
    auto out_dims = ValidateShape(shape, x_dims);
 | 
						|
    ctx->SetOutputDim("Out", out_dims);
 | 
						|
    if (x_dims[0] == out_dims[0]) {
 | 
						|
      // Only pass LoD when the first dimension of output and Input(X)
 | 
						|
      // are the same.
 | 
						|
      ctx->ShareLoD("X", /*->*/ "Out");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  static framework::DDim ValidateShape(const std::vector<int> shape,
 | 
						|
                                       const framework::DDim &in_dims) {
 | 
						|
    const int64_t in_size = framework::product(in_dims);
 | 
						|
    // only one dimension can be set to -1, whose size will be automatically
 | 
						|
    // infered.
 | 
						|
    const int64_t unk_dim_val = -1;
 | 
						|
    const int64_t copy_dim_val = 0;
 | 
						|
 | 
						|
    std::vector<int64_t> output_shape(shape.size(), 0);
 | 
						|
    int64_t capacity = 1;
 | 
						|
    int unk_dim_idx = -1;
 | 
						|
    for (size_t i = 0; i < shape.size(); ++i) {
 | 
						|
      if (shape[i] == unk_dim_val) {
 | 
						|
        PADDLE_ENFORCE(
 | 
						|
            unk_dim_idx == -1,
 | 
						|
            "Only one input dimension of Attr(shape) can be unknown.");
 | 
						|
        unk_dim_idx = i;
 | 
						|
      } else if (shape[i] == copy_dim_val) {
 | 
						|
        PADDLE_ENFORCE(
 | 
						|
            static_cast<int>(i) < in_dims.size(),
 | 
						|
            "The index of dimension to copy from input shape must be less "
 | 
						|
            "than the size of input shape.");
 | 
						|
      } else {
 | 
						|
        PADDLE_ENFORCE(
 | 
						|
            shape[i] > 0,
 | 
						|
            "Each input dimension of Attr(shape) must not be negtive except "
 | 
						|
            "one unknown dimension.");
 | 
						|
      }
 | 
						|
 | 
						|
      capacity *= (shape[i] ? shape[i] : in_dims[i]);
 | 
						|
      output_shape[i] =
 | 
						|
          (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    if (unk_dim_idx != -1) {
 | 
						|
      if (in_size > 0) {
 | 
						|
        // in_size < 0 and is un-determinate in compile time, skip the check,
 | 
						|
        // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
 | 
						|
        // capacity = -24, in_size = -8, output_shape[0] = 0
 | 
						|
        // the following check will fail.
 | 
						|
        output_shape[unk_dim_idx] = -in_size / capacity;
 | 
						|
        PADDLE_ENFORCE_EQ(output_shape[unk_dim_idx] * capacity, -in_size,
 | 
						|
                          "Invalid shape is given.");
 | 
						|
      } else {
 | 
						|
        output_shape[unk_dim_idx] = -1;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      PADDLE_ENFORCE_EQ(capacity, in_size, "Invalid shape is given.");
 | 
						|
    }
 | 
						|
    return framework::make_ddim(output_shape);
 | 
						|
  }
 | 
						|
 | 
						|
 protected:
 | 
						|
  framework::OpKernelType GetExpectedKernelType(
 | 
						|
      const framework::ExecutionContext &ctx) const override {
 | 
						|
    return framework::OpKernelType(
 | 
						|
        framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
 | 
						|
        ctx.device_context());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
 | 
						|
 public:
 | 
						|
  void Make() override {
 | 
						|
    AddInput("X", "(Tensor). The input tensor of reshape operator.");
 | 
						|
    AddInput("Shape",
 | 
						|
             "(Tensor<int32>, optional). If provided, reshape according to "
 | 
						|
             "this given shape. That is to say it has a higher priority than "
 | 
						|
             "the shape attribute, while the shape attribute still should be "
 | 
						|
             "set correctly to gurantee shape inference in compile time.")
 | 
						|
        .AsDispensable();
 | 
						|
    AddOutput("Out", "(Tensor). The output tensor of reshape operator.");
 | 
						|
    AddAttr<std::vector<int>>(
 | 
						|
        "shape", "(std::vector<int>) Target shape of reshape operator.");
 | 
						|
    AddComment(R"DOC(
 | 
						|
Reshape Operator.
 | 
						|
 | 
						|
Reshape Input(X) into the shape specified by Attr(shape) or Input(Shape). The
 | 
						|
data in Input(X) are unchanged.
 | 
						|
 | 
						|
Examples:
 | 
						|
 | 
						|
1. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
 | 
						|
specified by Attr(shape) is [6, 8], the reshape operator will transform Input(X)
 | 
						|
into a 2-D tensor with shape [6, 8] and leaving Input(X)'s data unchanged.
 | 
						|
 | 
						|
2. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
 | 
						|
specified by Attr(shape) is [2, 3, -1, 2], the reshape operator will transform
 | 
						|
Input(X) into a 4-D tensor with shape [2, 3, 4, 2] and leaving Input(X)'s data
 | 
						|
unchanged. In this case, one and only dimension of Attr(shape) can be set to -1,
 | 
						|
the value of this dimension is inferred from the total element number of
 | 
						|
Input(X) and remaining dimensions.
 | 
						|
 | 
						|
3. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
 | 
						|
specified by Attr(shape) is [-1, 0, 3, 2], the reshape operator will transform
 | 
						|
Input(X) into a 4-D tensor with shape [2, 4, 3, 2] and leaving Input(X)'s data
 | 
						|
unchanged. In this case, besides -1, 0 means the actual dimension value is going
 | 
						|
to be copied from the corresponding dimension of Input(X).
 | 
						|
 | 
						|
Note:
 | 
						|
 | 
						|
1. One and only one dimension in Attr(shape) can be set -1. In this case,
 | 
						|
the actual dimension value will be infered from the total element number of
 | 
						|
Input(X) and remaining dimensions.
 | 
						|
 | 
						|
2. More than one dimensions in Attr(shape) can be set to 0, which means the real
 | 
						|
dimension value will be copied from Input(X) at runtime. Note that the index of
 | 
						|
0 can not exceed Rank(X). For example, Input(X) is a 3-D tensor with shape
 | 
						|
[2, 3, 4], Attr(shape) = [2, 3, 2, 0] is an invalid input.
 | 
						|
 | 
						|
3. Input(Shape) has a higher priority than Attr(shape) if it is provided, while
 | 
						|
Attr(shape) still should be set correctly to gurantee shape inference in 
 | 
						|
compile-time.
 | 
						|
 | 
						|
)DOC");
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class ReshapeGradOp : public framework::OperatorWithKernel {
 | 
						|
 public:
 | 
						|
  ReshapeGradOp(const std::string &type,
 | 
						|
                const framework::VariableNameMap &inputs,
 | 
						|
                const framework::VariableNameMap &outputs,
 | 
						|
                const framework::AttributeMap &attrs)
 | 
						|
      : OperatorWithKernel(type, inputs, outputs, attrs) {}
 | 
						|
 | 
						|
  void InferShape(framework::InferShapeContext *ctx) const override {
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) shouldn't be null.");
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
 | 
						|
                   "Input(Out@GRAD) shouldn't be null.");
 | 
						|
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
 | 
						|
  }
 | 
						|
 | 
						|
 protected:
 | 
						|
  framework::OpKernelType GetExpectedKernelType(
 | 
						|
      const framework::ExecutionContext &ctx) const override {
 | 
						|
    return framework::OpKernelType(
 | 
						|
        framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
 | 
						|
        ctx.device_context());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class ReshapeKernel {
 | 
						|
 public:
 | 
						|
  void operator()(const framework::ExecutionContext &ctx) const {
 | 
						|
    auto *out = ctx.Output<framework::LoDTensor>("Out");
 | 
						|
    auto *in = ctx.Input<framework::LoDTensor>("X");
 | 
						|
 | 
						|
    auto *shape_tensor = ctx.HasInput("Shape")
 | 
						|
                             ? ctx.Input<framework::LoDTensor>("Shape")
 | 
						|
                             : nullptr;
 | 
						|
 | 
						|
    framework::DDim out_dims = out->dims();
 | 
						|
 | 
						|
    if (shape_tensor) {
 | 
						|
      auto *shape_data = shape_tensor->data<int>();
 | 
						|
      framework::Tensor cpu_shape_tensor;
 | 
						|
      if (platform::is_gpu_place(shape_tensor->place())) {
 | 
						|
        TensorCopySync(*shape_tensor, platform::CPUPlace(), &cpu_shape_tensor);
 | 
						|
        shape_data = cpu_shape_tensor.data<int>();
 | 
						|
      }
 | 
						|
      auto shape =
 | 
						|
          std::vector<int>(shape_data, shape_data + shape_tensor->numel());
 | 
						|
      out_dims = ReshapeOp::ValidateShape(shape, in->dims());
 | 
						|
    }
 | 
						|
    if (!in->lod().empty()) {
 | 
						|
      PADDLE_ENFORCE_EQ(
 | 
						|
          out_dims[0], in->dims()[0],
 | 
						|
          "Reshape operator cannot reshape an input sequence batch "
 | 
						|
          "into an output sequence batch that has a different "
 | 
						|
          "number of time steps. Please consider using "
 | 
						|
          "sequence_reshape op.");
 | 
						|
    }
 | 
						|
 | 
						|
    out->mutable_data(ctx.GetPlace(), in->type());
 | 
						|
    framework::TensorCopySync(*in, ctx.GetPlace(), out);
 | 
						|
    out->Resize(out_dims);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class ReshapeGradKernel {
 | 
						|
 public:
 | 
						|
  void operator()(const framework::ExecutionContext &ctx) const {
 | 
						|
    auto *d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
 | 
						|
    auto *d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
 | 
						|
    auto in_dims = d_x->dims();
 | 
						|
 | 
						|
    d_x->mutable_data(ctx.GetPlace(), d_out->type());
 | 
						|
    framework::TensorCopySync(*d_out, ctx.GetPlace(), d_x);
 | 
						|
    d_x->Resize(in_dims);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 | 
						|
namespace ops = paddle::operators;
 | 
						|
 | 
						|
REGISTER_OPERATOR(reshape, ops::ReshapeOp, ops::ReshapeOpMaker,
 | 
						|
                  paddle::framework::DefaultGradOpDescMaker<true>);
 | 
						|
REGISTER_OPERATOR(reshape_grad, ops::ReshapeGradOp);
 | 
						|
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
 | 
						|
                               ops::ReshapeKernel, int, ops::ReshapeKernel,
 | 
						|
                               int64_t, ops::ReshapeKernel);
 | 
						|
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
 | 
						|
                               double, ops::ReshapeGradKernel, int,
 | 
						|
                               ops::ReshapeGradKernel, int64_t,
 | 
						|
                               ops::ReshapeGradKernel);
 | 
						|
 | 
						|
#ifdef PADDLE_WITH_CUDA
 | 
						|
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
 | 
						|
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
 | 
						|
                                int64_t, ops::ReshapeKernel);
 | 
						|
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
 | 
						|
                                double, ops::ReshapeGradKernel, int,
 | 
						|
                                ops::ReshapeGradKernel, int64_t,
 | 
						|
                                ops::ReshapeGradKernel);
 | 
						|
#endif
 |