You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/inference/example.cc

106 lines
3.4 KiB

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <time.h>
#include <iostream>
#include "gflags/gflags.h"
#include "paddle/framework/init.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/inference/io.h"
DEFINE_string(dirname, "", "Directory of the inference model.");
int main(int argc, char** argv) {
google::ParseCommandLineFlags(&argc, &argv, true);
if (FLAGS_dirname.empty()) {
// Example:
// ./example --dirname=recognize_digits_mlp.inference.model
std::cout << "Usage: ./example --dirname=path/to/your/model" << std::endl;
exit(1);
}
// 1. Define place, executor, scope
auto place = paddle::platform::CPUPlace();
paddle::framework::InitDevices();
auto* executor = new paddle::framework::Executor(place);
auto* scope = new paddle::framework::Scope();
std::cout << "FLAGS_dirname: " << FLAGS_dirname << std::endl;
std::string dirname = FLAGS_dirname;
// 2. Initialize the inference program
auto* inference_program = paddle::inference::Load(*executor, *scope, dirname);
// 3. Optional: perform optimization on the inference_program
// 4. Get the feed_var_names and fetch_var_names
const std::vector<std::string>& feed_var_names =
inference_program->GetFeedVarNames();
const std::vector<std::string>& fetch_var_names =
inference_program->GetFetchVarNames();
// 5. Generate input
paddle::framework::LoDTensor input;
srand(time(0));
float* input_ptr =
input.mutable_data<float>({1, 784}, paddle::platform::CPUPlace());
for (int i = 0; i < 784; ++i) {
input_ptr[i] = rand() / (static_cast<float>(RAND_MAX));
}
std::vector<paddle::framework::LoDTensor> feeds;
feeds.push_back(input);
std::vector<paddle::framework::LoDTensor> fetchs;
// Set up maps for feed and fetch targets
std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;
std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
// set_feed_variable
for (size_t i = 0; i < feed_var_names.size(); ++i) {
feed_targets[feed_var_names[i]] = &feeds[i];
}
// get_fetch_variable
fetchs.resize(fetch_var_names.size());
for (size_t i = 0; i < fetch_var_names.size(); ++i) {
fetch_targets[fetch_var_names[i]] = &fetchs[i];
}
// Run the inference program
executor->Run(*inference_program, scope, feed_targets, fetch_targets);
// Get outputs
for (size_t i = 0; i < fetchs.size(); ++i) {
auto dims_i = fetchs[i].dims();
std::cout << "dims_i:";
for (int j = 0; j < dims_i.size(); ++j) {
std::cout << " " << dims_i[j];
}
std::cout << std::endl;
std::cout << "result:";
float* output_ptr = fetchs[i].data<float>();
for (int j = 0; j < paddle::framework::product(dims_i); ++j) {
std::cout << " " << output_ptr[j];
}
std::cout << std::endl;
}
delete inference_program;
delete scope;
delete executor;
return 0;
}