You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							348 lines
						
					
					
						
							4.6 KiB
						
					
					
				
			
		
		
	
	
							348 lines
						
					
					
						
							4.6 KiB
						
					
					
				name: "alexnet"
 | 
						|
input: "data"
 | 
						|
input_dim: 64
 | 
						|
input_dim: 3
 | 
						|
input_dim: 227
 | 
						|
input_dim: 227
 | 
						|
input: "label"
 | 
						|
input_dim: 64
 | 
						|
input_dim: 1
 | 
						|
input_dim: 1
 | 
						|
input_dim: 1 
 | 
						|
force_backward: true
 | 
						|
layer {
 | 
						|
  name: "conv1"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "data"
 | 
						|
  top: "conv1"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 96
 | 
						|
    kernel_size: 11
 | 
						|
    stride: 4
 | 
						|
    weight_filler {
 | 
						|
      type: "gaussian"
 | 
						|
      std: 0.01
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "relu1"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "conv1"
 | 
						|
  top: "conv1"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "norm1"
 | 
						|
  type: "LRN"
 | 
						|
  bottom: "conv1"
 | 
						|
  top: "norm1"
 | 
						|
  lrn_param {
 | 
						|
    local_size: 5
 | 
						|
    alpha: 0.0001
 | 
						|
    beta: 0.75
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "pool1"
 | 
						|
  type: "Pooling"
 | 
						|
  bottom: "norm1"
 | 
						|
  top: "pool1"
 | 
						|
  pooling_param {
 | 
						|
    pool: MAX
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 2
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv2"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "pool1"
 | 
						|
  top: "conv2"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 256
 | 
						|
    pad: 2
 | 
						|
    kernel_size: 5
 | 
						|
    group: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "gaussian"
 | 
						|
      std: 0.01
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.1
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "relu2"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "conv2"
 | 
						|
  top: "conv2"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "norm2"
 | 
						|
  type: "LRN"
 | 
						|
  bottom: "conv2"
 | 
						|
  top: "norm2"
 | 
						|
  lrn_param {
 | 
						|
    local_size: 5
 | 
						|
    alpha: 0.0001
 | 
						|
    beta: 0.75
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "pool2"
 | 
						|
  type: "Pooling"
 | 
						|
  bottom: "norm2"
 | 
						|
  top: "pool2"
 | 
						|
  pooling_param {
 | 
						|
    pool: MAX
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 2
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv3"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "pool2"
 | 
						|
  top: "conv3"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 384
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    weight_filler {
 | 
						|
      type: "gaussian"
 | 
						|
      std: 0.01
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "relu3"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "conv3"
 | 
						|
  top: "conv3"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv4"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "conv3"
 | 
						|
  top: "conv4"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 384
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    group: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "gaussian"
 | 
						|
      std: 0.01
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.1
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "relu4"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "conv4"
 | 
						|
  top: "conv4"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv5"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "conv4"
 | 
						|
  top: "conv5"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 256
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    group: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "gaussian"
 | 
						|
      std: 0.01
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.1
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "relu5"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "conv5"
 | 
						|
  top: "conv5"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "pool5"
 | 
						|
  type: "Pooling"
 | 
						|
  bottom: "conv5"
 | 
						|
  top: "pool5"
 | 
						|
  pooling_param {
 | 
						|
    pool: MAX
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 2
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "fc6"
 | 
						|
  type: "InnerProduct"
 | 
						|
  bottom: "pool5"
 | 
						|
  top: "fc6"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  inner_product_param {
 | 
						|
    num_output: 4096
 | 
						|
    weight_filler {
 | 
						|
      type: "gaussian"
 | 
						|
      std: 0.005
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.1
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "relu6"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "fc6"
 | 
						|
  top: "fc6"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "drop6"
 | 
						|
  type: "Dropout"
 | 
						|
  bottom: "fc6"
 | 
						|
  top: "fc6"
 | 
						|
  dropout_param {
 | 
						|
    dropout_ratio: 0.5
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "fc7"
 | 
						|
  type: "InnerProduct"
 | 
						|
  bottom: "fc6"
 | 
						|
  top: "fc7"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  inner_product_param {
 | 
						|
    num_output: 4096
 | 
						|
    weight_filler {
 | 
						|
      type: "gaussian"
 | 
						|
      std: 0.005
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.1
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "relu7"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "fc7"
 | 
						|
  top: "fc7"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "drop7"
 | 
						|
  type: "Dropout"
 | 
						|
  bottom: "fc7"
 | 
						|
  top: "fc7"
 | 
						|
  dropout_param {
 | 
						|
    dropout_ratio: 0.5
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "fc8"
 | 
						|
  type: "InnerProduct"
 | 
						|
  bottom: "fc7"
 | 
						|
  top: "fc8"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  inner_product_param {
 | 
						|
    num_output: 1000
 | 
						|
    weight_filler {
 | 
						|
      type: "gaussian"
 | 
						|
      std: 0.01
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "loss"
 | 
						|
  type: "SoftmaxWithLoss"
 | 
						|
  bottom: "fc8"
 | 
						|
  bottom: "label"
 | 
						|
  top: "loss"
 | 
						|
}
 |