You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							112 lines
						
					
					
						
							3.8 KiB
						
					
					
				
			
		
		
	
	
							112 lines
						
					
					
						
							3.8 KiB
						
					
					
				/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
 | 
						|
#pragma once
 | 
						|
#include "paddle/fluid/framework/eigen.h"
 | 
						|
#include "paddle/fluid/framework/op_registry.h"
 | 
						|
#include "paddle/fluid/framework/operator.h"
 | 
						|
#include "paddle/fluid/operators/detail/safe_ref.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
template <typename DeviceContext, typename Functor>
 | 
						|
class CumKernel : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 | 
						|
 public:
 | 
						|
  using T = typename Functor::ELEMENT_TYPE;
 | 
						|
 | 
						|
  void Compute(const framework::ExecutionContext& context) const override {
 | 
						|
    auto& X = detail::Ref(context.Input<framework::Tensor>("X"),
 | 
						|
                          "Cannot get input tensor X, variable name = %s",
 | 
						|
                          context.op().Input("X"));
 | 
						|
 | 
						|
    auto& Out = detail::Ref(context.Output<framework::Tensor>("Out"),
 | 
						|
                            "Cannot get output tensor Out, variable name = %s",
 | 
						|
                            context.op().Output("Out"));
 | 
						|
    int axis = context.Attr<int>("axis");
 | 
						|
    bool exclusive = context.Attr<bool>("exclusive");
 | 
						|
    bool reverse = context.Attr<bool>("reverse");
 | 
						|
    auto x_dims = X.dims();
 | 
						|
    if (axis == -1) {
 | 
						|
      axis = x_dims.size() - 1;
 | 
						|
    }
 | 
						|
    PADDLE_ENFORCE_LT(
 | 
						|
        axis, x_dims.size(),
 | 
						|
        "axis should be less than the dimensiotn of the input tensor");
 | 
						|
    Out.mutable_data<T>(context.GetPlace());
 | 
						|
 | 
						|
    int pre = 1;
 | 
						|
    int post = 1;
 | 
						|
    int mid = x_dims[axis];
 | 
						|
    for (int i = 0; i < axis; ++i) {
 | 
						|
      pre *= x_dims[i];
 | 
						|
    }
 | 
						|
    for (int i = axis + 1; i < x_dims.size(); ++i) {
 | 
						|
      post *= x_dims[i];
 | 
						|
    }
 | 
						|
 | 
						|
    auto x = framework::EigenVector<T>::Flatten(X);
 | 
						|
    auto out = framework::EigenVector<T>::Flatten(Out);
 | 
						|
    auto* place =
 | 
						|
        context.template device_context<DeviceContext>().eigen_device();
 | 
						|
 | 
						|
    using IndexT = Eigen::DenseIndex;
 | 
						|
    if (pre == 1) {
 | 
						|
      if (post == 1) {
 | 
						|
        ComputeImp(*place, Eigen::DSizes<IndexT, 1>(mid), x, out,
 | 
						|
                   /* axis= */ 0, reverse, exclusive);
 | 
						|
      } else {
 | 
						|
        ComputeImp(*place, Eigen::DSizes<IndexT, 2>(mid, post), x, out,
 | 
						|
                   /* axis= */ 0, reverse, exclusive);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      if (post == 1) {
 | 
						|
        ComputeImp(*place, Eigen::DSizes<IndexT, 2>(pre, mid), x, out,
 | 
						|
                   /* axis= */ 1, reverse, exclusive);
 | 
						|
      } else {
 | 
						|
        ComputeImp(*place, Eigen::DSizes<IndexT, 3>(pre, mid, post), x, out,
 | 
						|
                   /* axis= */ 1, reverse, exclusive);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  template <typename Device, typename Dim, typename X, typename Out>
 | 
						|
  void ComputeImp(Device d, const Dim& dims, X x, Out out, int axis,
 | 
						|
                  bool reverse, bool exclusive) const {
 | 
						|
    if (!reverse) {
 | 
						|
      out.reshape(dims).device(d) = Functor()(x.reshape(dims), axis, exclusive);
 | 
						|
    } else {
 | 
						|
      std::array<bool, Dim::count> rev;
 | 
						|
      rev.fill(false);
 | 
						|
      rev[axis] = reverse;
 | 
						|
      out.reshape(dims).device(d) =
 | 
						|
          Functor()(x.reshape(dims).reverse(rev), axis, exclusive).reverse(rev);
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
struct CumsumFunctor {
 | 
						|
  using ELEMENT_TYPE = T;
 | 
						|
  template <typename X>
 | 
						|
  const typename X::TensorScanSumOp operator()(X x, int axis,
 | 
						|
                                               bool exclusive) const {
 | 
						|
    return x.cumsum(axis, exclusive);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 |