You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							254 lines
						
					
					
						
							10 KiB
						
					
					
				
			
		
		
	
	
							254 lines
						
					
					
						
							10 KiB
						
					
					
				/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
 | 
						|
#pragma once
 | 
						|
#include <algorithm>
 | 
						|
#include "paddle/fluid/framework/op_registry.h"
 | 
						|
#include "paddle/fluid/operators/math/math_function.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
template <typename DeviceContext, typename T>
 | 
						|
class CPUPSROIPoolOpKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& ctx) const override {
 | 
						|
    auto* in = ctx.Input<framework::Tensor>("X");
 | 
						|
    auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
 | 
						|
    auto* out = ctx.Output<framework::Tensor>("Out");
 | 
						|
 | 
						|
    auto pooled_height = ctx.Attr<int>("pooled_height");
 | 
						|
    auto pooled_width = ctx.Attr<int>("pooled_width");
 | 
						|
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
 | 
						|
    auto output_channels = ctx.Attr<int>("output_channels");
 | 
						|
 | 
						|
    auto in_dims = in->dims();
 | 
						|
    int batch_size = in_dims[0];
 | 
						|
    int input_channels = in_dims[1];
 | 
						|
    int height = in_dims[2];
 | 
						|
    int width = in_dims[3];
 | 
						|
    int rois_num = rois->dims()[0];
 | 
						|
 | 
						|
    auto in_stride = framework::stride(in_dims);
 | 
						|
    auto roi_stride = framework::stride(rois->dims());
 | 
						|
    auto out_stride = framework::stride(out->dims());
 | 
						|
 | 
						|
    const T* input_data = in->data<T>();
 | 
						|
 | 
						|
    framework::Tensor rois_batch_id_list;
 | 
						|
    rois_batch_id_list.Resize({rois_num});
 | 
						|
    int* rois_batch_id_data =
 | 
						|
        rois_batch_id_list.mutable_data<int>(ctx.GetPlace());
 | 
						|
 | 
						|
    auto rois_lod = rois->lod().back();
 | 
						|
    int rois_batch_size = rois_lod.size() - 1;
 | 
						|
    PADDLE_ENFORCE_EQ(
 | 
						|
        rois_batch_size, batch_size,
 | 
						|
        "the rois_batch_size and input(X) batch_size should be the same.");
 | 
						|
    int rois_num_with_lod = rois_lod[rois_batch_size];
 | 
						|
    PADDLE_ENFORCE_EQ(rois_num_with_lod, rois_num,
 | 
						|
                      "the rois_num from input and lod must be the same");
 | 
						|
 | 
						|
    PADDLE_ENFORCE_EQ(input_channels,
 | 
						|
                      output_channels * pooled_height * pooled_width,
 | 
						|
                      "the channels of input X should equal the product of "
 | 
						|
                      "output_channels x pooled_height x pooled_width");
 | 
						|
 | 
						|
    // calculate batch id index for each roi according to LoD
 | 
						|
    for (int n = 0; n < rois_batch_size; ++n) {
 | 
						|
      for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
 | 
						|
        rois_batch_id_data[i] = n;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    T* output_data = out->mutable_data<T>(ctx.GetPlace());
 | 
						|
    const T* input_rois = rois->data<T>();
 | 
						|
 | 
						|
    // calculate psroipooling, parallel processing can be implemented per ROI
 | 
						|
    for (int n = 0; n < rois_num; ++n) {
 | 
						|
      // set roi batch id
 | 
						|
      int roi_batch_id = rois_batch_id_data[n];
 | 
						|
 | 
						|
      // [start, end) interval for spatial sampling
 | 
						|
      const T* offset_input_rois = input_rois + n * 4;
 | 
						|
      T roi_start_w =
 | 
						|
          static_cast<T>(round(offset_input_rois[0])) * spatial_scale;
 | 
						|
      T roi_start_h =
 | 
						|
          static_cast<T>(round(offset_input_rois[1])) * spatial_scale;
 | 
						|
      T roi_end_w =
 | 
						|
          static_cast<T>(round(offset_input_rois[2]) + 1.) * spatial_scale;
 | 
						|
      T roi_end_h =
 | 
						|
          static_cast<T>(round(offset_input_rois[3]) + 1.) * spatial_scale;
 | 
						|
 | 
						|
      // Force too small rois to be 1 x 1
 | 
						|
      T roi_height = std::max(roi_end_h - roi_start_h, (T)0.1);  // avoid 0
 | 
						|
      T roi_width = std::max(roi_end_w - roi_start_w, (T)0.1);
 | 
						|
 | 
						|
      // Compute bin size w and h at input feature map
 | 
						|
      T bin_size_h = roi_height / static_cast<T>(pooled_height);
 | 
						|
      T bin_size_w = roi_width / static_cast<T>(pooled_width);
 | 
						|
 | 
						|
      // calculate each pixel of the output feature map.
 | 
						|
      int out_roi_offset = n * out_stride[0];
 | 
						|
      for (int c = 0; c < output_channels; ++c) {
 | 
						|
        // per category
 | 
						|
        int out_plane_offset = out_roi_offset + c * out_stride[1];
 | 
						|
        for (int ph = 0; ph < pooled_height; ++ph) {
 | 
						|
          int out_row_offset = out_plane_offset + ph * out_stride[2];
 | 
						|
          for (int pw = 0; pw < pooled_width; ++pw) {
 | 
						|
            // calculate w and h at input feature map
 | 
						|
            int hstart = floor(static_cast<T>(ph) * bin_size_h + roi_start_h);
 | 
						|
            int wstart = floor(static_cast<T>(pw) * bin_size_w + roi_start_w);
 | 
						|
            int hend = ceil(static_cast<T>(ph + 1) * bin_size_h + roi_start_h);
 | 
						|
            int wend = ceil(static_cast<T>(pw + 1) * bin_size_w + roi_start_w);
 | 
						|
            //  Add roi offsets and clip to input boundaries
 | 
						|
            hstart = std::min(std::max(hstart, 0), height);
 | 
						|
            wstart = std::min(std::max(wstart, 0), width);
 | 
						|
            hend = std::min(std::max(hend, 0), height);
 | 
						|
            wend = std::min(std::max(wend, 0), width);
 | 
						|
 | 
						|
            int output_index = out_row_offset + pw;
 | 
						|
            int input_channel = (c * pooled_height + ph) * pooled_width + pw;
 | 
						|
            int input_plane_offset =
 | 
						|
                roi_batch_id * in_stride[0] + input_channel * in_stride[1];
 | 
						|
            const T* offset_input_data = input_data + input_plane_offset;
 | 
						|
            T out_sum = 0.;
 | 
						|
            bool is_empty = (hend <= hstart) || (wend <= wstart);
 | 
						|
            for (int ih = hstart; ih < hend; ++ih) {
 | 
						|
              for (int iw = wstart; iw < wend; ++iw) {
 | 
						|
                int input_index = ih * in_stride[2] + iw;
 | 
						|
                out_sum += offset_input_data[input_index];
 | 
						|
              }
 | 
						|
            }
 | 
						|
            T bin_area = (hend - hstart) * (wend - wstart);
 | 
						|
            output_data[output_index] = is_empty ? 0. : out_sum / bin_area;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename DeviceContext, typename T>
 | 
						|
class CPUPSROIPoolGradOpKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& ctx) const override {
 | 
						|
    auto* in = ctx.Input<framework::Tensor>("X");
 | 
						|
    auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
 | 
						|
    auto* output_grad =
 | 
						|
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
 | 
						|
    auto* input_grad =
 | 
						|
        ctx.Output<framework::Tensor>(framework::GradVarName("X"));
 | 
						|
 | 
						|
    auto pooled_height = ctx.Attr<int>("pooled_height");
 | 
						|
    auto pooled_width = ctx.Attr<int>("pooled_width");
 | 
						|
    auto output_channels = ctx.Attr<int>("output_channels");
 | 
						|
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
 | 
						|
 | 
						|
    if (input_grad) {
 | 
						|
      auto in_dims = in->dims();
 | 
						|
      int input_channels = in_dims[1];
 | 
						|
      int height = in_dims[2];
 | 
						|
      int width = in_dims[3];
 | 
						|
      int rois_num = rois->dims()[0];
 | 
						|
 | 
						|
      // set roi batch id
 | 
						|
      framework::Tensor rois_batch_id_list;
 | 
						|
      rois_batch_id_list.Resize({rois_num});
 | 
						|
      int* rois_batch_id_data =
 | 
						|
          rois_batch_id_list.mutable_data<int>(ctx.GetPlace());
 | 
						|
      auto rois_lod = rois->lod().back();
 | 
						|
      int rois_batch_size = rois_lod.size() - 1;
 | 
						|
      // calculate batch id index for each roi according to LoD
 | 
						|
      for (int n = 0; n < rois_batch_size; ++n) {
 | 
						|
        for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
 | 
						|
          rois_batch_id_data[i] = n;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      const T* input_rois = rois->data<T>();
 | 
						|
      const T* output_grad_data = output_grad->data<T>();
 | 
						|
      T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
 | 
						|
 | 
						|
      // set gradient of X to be 0. before backpropagate.
 | 
						|
      math::SetConstant<DeviceContext, T> set_zero;
 | 
						|
      set_zero(ctx.template device_context<DeviceContext>(), input_grad,
 | 
						|
               static_cast<T>(0));
 | 
						|
 | 
						|
      // backpropagate gradient per output pixel
 | 
						|
      int output_grad_size = output_grad->numel();
 | 
						|
      for (int i = 0; i < output_grad_size; ++i) {
 | 
						|
        // The output is in order (n, c, ph, pw)
 | 
						|
        int pw = i % pooled_width;
 | 
						|
        int ph = (i / pooled_width) % pooled_height;
 | 
						|
        int c = (i / pooled_width / pooled_height) % output_channels;
 | 
						|
        int n = i / pooled_width / pooled_height / output_channels;
 | 
						|
 | 
						|
        // set roi_batch_id
 | 
						|
        int roi_batch_id = rois_batch_id_data[n];
 | 
						|
        int input_channel = (c * pooled_height + ph) * pooled_width + pw;
 | 
						|
        int input_offset =
 | 
						|
            (roi_batch_id * input_channels + input_channel) * height * width;
 | 
						|
        T* offset_input_grad_data = input_grad_data + input_offset;
 | 
						|
 | 
						|
        // [start, end) interval for spatial sampling
 | 
						|
        const T* offset_input_rois = input_rois + n * 4;
 | 
						|
        T roi_start_w =
 | 
						|
            static_cast<T>(round(offset_input_rois[0])) * spatial_scale;
 | 
						|
        T roi_start_h =
 | 
						|
            static_cast<T>(round(offset_input_rois[1])) * spatial_scale;
 | 
						|
        T roi_end_w =
 | 
						|
            static_cast<T>(round(offset_input_rois[2]) + 1.) * spatial_scale;
 | 
						|
        T roi_end_h =
 | 
						|
            static_cast<T>(round(offset_input_rois[3]) + 1.) * spatial_scale;
 | 
						|
 | 
						|
        // Force too small ROIs to be 1x1
 | 
						|
        T roi_height = std::max(roi_end_h - roi_start_h, (T)0.1);  // avoid 0
 | 
						|
        T roi_width = std::max(roi_end_w - roi_start_w, (T)0.1);
 | 
						|
 | 
						|
        // Compute w and h at input feature map
 | 
						|
        T bin_size_h = roi_height / static_cast<T>(pooled_height);
 | 
						|
        T bin_size_w = roi_width / static_cast<T>(pooled_width);
 | 
						|
 | 
						|
        int hstart = floor(bin_size_h * static_cast<T>(ph) + roi_start_h);
 | 
						|
        int wstart = floor(bin_size_w * static_cast<T>(pw) + roi_start_w);
 | 
						|
        int hend = ceil(bin_size_h * static_cast<T>(ph + 1) + roi_start_h);
 | 
						|
        int wend = ceil(bin_size_w * static_cast<T>(pw + 1) + roi_start_w);
 | 
						|
 | 
						|
        // Add roi offsets and clip to input boundaries
 | 
						|
        hstart = std::min(std::max(hstart, 0), height);
 | 
						|
        hend = std::min(std::max(hend, 0), height);
 | 
						|
        wstart = std::min(std::max(wstart, 0), width);
 | 
						|
        wend = std::min(std::max(wend, 0), width);
 | 
						|
        bool is_empty = (hend <= hstart) || (wend <= wstart);
 | 
						|
 | 
						|
        // Accumulate diff_val into input data
 | 
						|
        T bin_area = static_cast<T>((hend - hstart) * (wend - wstart));
 | 
						|
        T diff_val = is_empty ? 0. : output_grad_data[i] / bin_area;
 | 
						|
        for (int ih = hstart; ih < hend; ++ih) {
 | 
						|
          for (int iw = wstart; iw < wend; ++iw) {
 | 
						|
            int input_index = ih * width + iw;
 | 
						|
            offset_input_grad_data[input_index] += diff_val;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 |