You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
394 lines
14 KiB
394 lines
14 KiB
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "MKLDNNConvLayer.h"
|
|
#include "paddle/math/MathUtils.h"
|
|
#include "paddle/utils/Logging.h"
|
|
|
|
using namespace mkldnn; // NOLINT
|
|
typedef memory::format format;
|
|
|
|
namespace paddle {
|
|
|
|
REGISTER_LAYER(mkldnn_conv, MKLDNNConvLayer);
|
|
|
|
bool MKLDNNConvLayer::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
if (!MKLDNNLayer::init(layerMap, parameterMap)) {
|
|
return false;
|
|
}
|
|
CHECK_EQ(inputLayers_.size(), 1UL) << "Only support one input layer yet";
|
|
CHECK_EQ(inputLayers_.size(), parameters_.size());
|
|
CHECK(config_.shared_biases()) << "Only support shared biases yet";
|
|
|
|
oc_ = config_.num_filters();
|
|
const ConvConfig& conf = config_.inputs(0).conv_conf();
|
|
ic_ = conf.channels();
|
|
fw_ = conf.filter_size();
|
|
fh_ = conf.filter_size_y();
|
|
pw_ = conf.padding();
|
|
ph_ = conf.padding_y();
|
|
dw_ = conf.dilation();
|
|
dh_ = conf.dilation_y();
|
|
sw_ = conf.stride();
|
|
sh_ = conf.stride_y();
|
|
gp_ = conf.groups();
|
|
oh_ = conf.output_y();
|
|
ow_ = conf.output_x();
|
|
ih_ = conf.img_size_y();
|
|
iw_ = conf.img_size();
|
|
caffeMode_ = conf.caffe_mode();
|
|
CHECK(caffeMode_) << "Only support caffe mode yet";
|
|
CHECK(dh_ == 1 && dw_ == 1) << "Only support dilation 1 yet";
|
|
// check group setting
|
|
CHECK_EQ((oc_ / gp_) * gp_, oc_) << "group is indivisible for oc";
|
|
CHECK_EQ((ic_ / gp_) * gp_, ic_) << "group is indivisible for ic";
|
|
|
|
// create weight
|
|
size_t height = oc_ / gp_;
|
|
size_t width = ic_ * fh_ * fw_;
|
|
CHECK_EQ(parameters_[0]->getSize(), height * width);
|
|
weight_ =
|
|
std::unique_ptr<Weight>(new Weight(height, width, parameters_[0], 0));
|
|
|
|
// create biases
|
|
if (biasParameter_.get() != NULL) {
|
|
biases_ = std::unique_ptr<Weight>(new Weight(1, oc_, biasParameter_, 0));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void MKLDNNConvLayer::convertWeightsFromPaddle() {
|
|
if (hasInitedWgt_) {
|
|
return;
|
|
}
|
|
|
|
CHECK(wgtVal_) << "should have been initialized";
|
|
// the paddle weight format is oihw or goihw
|
|
auto targetDim = wgtVal_->getDims();
|
|
auto srcFmt = (gp_ == 1) ? memory::format::oihw : memory::format::goihw;
|
|
wgtVal_->reorderDataFrom(wgtVal_, srcFmt, targetDim);
|
|
hasInitedWgt_ = true;
|
|
}
|
|
|
|
void MKLDNNConvLayer::convertWeightsToPaddle() {
|
|
CHECK(wgtVal_) << "should have been initialized";
|
|
auto targetDim = wgtVal_->getDims();
|
|
auto dstFmt = (gp_ == 1) ? memory::format::oihw : memory::format::goihw;
|
|
wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim);
|
|
}
|
|
|
|
void MKLDNNConvLayer::reshape(
|
|
int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) {
|
|
reshapeInput(bs, ih, iw);
|
|
|
|
// cal output sizes
|
|
// oc can not be changed
|
|
int fh = (fh_ - 1) * dh_ + 1;
|
|
int fw = (fw_ - 1) * dw_ + 1;
|
|
oh = outputSize(ih, fh, ph_, sh_, caffeMode_);
|
|
ow = outputSize(iw, fw, pw_, sw_, caffeMode_);
|
|
|
|
reshapeOutput(oh, ow);
|
|
resizeOutput(bs, oc * oh * ow);
|
|
|
|
printSizeInfo();
|
|
}
|
|
|
|
void MKLDNNConvLayer::resetFwd(std::vector<primitive>& pipeline,
|
|
MKLDNNMatrixPtr& in,
|
|
MKLDNNMatrixPtr& wgt,
|
|
MKLDNNMatrixPtr& bias,
|
|
MKLDNNMatrixPtr& out) {
|
|
resetFwdPD(fwdPD_);
|
|
|
|
resetFwdBuffers(fwdPD_, in, wgt, bias, out);
|
|
|
|
resetFwdPipeline(pipeline, fwdPD_, in, wgt, bias, out);
|
|
}
|
|
|
|
void MKLDNNConvLayer::resetBwd(std::vector<primitive>& pipeline,
|
|
MKLDNNMatrixPtr& in,
|
|
MKLDNNMatrixPtr& wgt,
|
|
MKLDNNMatrixPtr& bias,
|
|
MKLDNNMatrixPtr& out) {
|
|
std::shared_ptr<conv_bwdWgt::primitive_desc> bwdWgtPD;
|
|
std::shared_ptr<conv_bwdData::primitive_desc> bwdDataPD;
|
|
|
|
resetBwdWgtPD(bwdWgtPD);
|
|
|
|
resetBwdDataPD(bwdDataPD);
|
|
|
|
resetBwdBuffers(bwdWgtPD, bwdDataPD, in, wgt, bias, out);
|
|
|
|
resetBwdPipeline(pipeline, bwdWgtPD, bwdDataPD, in, wgt, bias, out);
|
|
}
|
|
|
|
void MKLDNNConvLayer::updateWeights(const UpdateCallback& callback) {
|
|
weight_->getParameterPtr()->incUpdate(callback);
|
|
if (biases_ && biases_->getWGrad()) {
|
|
biases_->getParameterPtr()->incUpdate(callback);
|
|
}
|
|
}
|
|
|
|
void MKLDNNConvLayer::loadConvSettings(memory::dims& wgt,
|
|
memory::dims& bias,
|
|
memory::dims& stride,
|
|
memory::dims& dilation,
|
|
memory::dims& padL,
|
|
memory::dims& padR) {
|
|
wgt = (gp_ == 1) ? memory::dims{oc_, ic_, fh_, fw_}
|
|
: memory::dims{gp_, oc_ / gp_, ic_ / gp_, fh_, fw_};
|
|
bias = memory::dims{oc_};
|
|
stride = memory::dims{sh_, sw_};
|
|
padL = memory::dims{ph_, pw_};
|
|
padR = getPaddingR();
|
|
// note: mkldnn dilation start from 0
|
|
dilation = memory::dims{dh_ - 1, dw_ - 1};
|
|
}
|
|
|
|
void MKLDNNConvLayer::resetFwdPD(
|
|
std::shared_ptr<conv_fwd::primitive_desc>& pd) {
|
|
// dims for conv
|
|
memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_};
|
|
memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
|
|
memory::dims wgtDims, biasDims, strides, dilations, padL, padR;
|
|
loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR);
|
|
|
|
prop_kind pk = passType_ == PASS_TEST ? prop_kind::forward_scoring
|
|
: prop_kind::forward_training;
|
|
algorithm algo = algorithm::convolution_direct;
|
|
padding_kind padKind = padding_kind::zero;
|
|
conv_fwd::desc fwdDesc =
|
|
biases_ && biases_->getW()
|
|
? conv_fwd::desc(pk,
|
|
algo,
|
|
MKLDNNMatrix::createMemoryDesc(inDims),
|
|
MKLDNNMatrix::createMemoryDesc(wgtDims),
|
|
MKLDNNMatrix::createMemoryDesc(biasDims),
|
|
MKLDNNMatrix::createMemoryDesc(outDims),
|
|
strides,
|
|
dilations,
|
|
padL,
|
|
padR,
|
|
padKind)
|
|
: conv_fwd::desc(pk,
|
|
algo,
|
|
MKLDNNMatrix::createMemoryDesc(inDims),
|
|
MKLDNNMatrix::createMemoryDesc(wgtDims),
|
|
MKLDNNMatrix::createMemoryDesc(outDims),
|
|
strides,
|
|
dilations,
|
|
padL,
|
|
padR,
|
|
padKind);
|
|
pd.reset(new conv_fwd::primitive_desc(fwdDesc, engine_));
|
|
}
|
|
|
|
void MKLDNNConvLayer::resetFwdBuffers(
|
|
std::shared_ptr<conv_fwd::primitive_desc>& pd,
|
|
MKLDNNMatrixPtr& in,
|
|
MKLDNNMatrixPtr& wgt,
|
|
MKLDNNMatrixPtr& bias,
|
|
MKLDNNMatrixPtr& out) {
|
|
CHECK(pd);
|
|
resetInValue(
|
|
in, std::make_shared<memory::primitive_desc>(pd->src_primitive_desc()));
|
|
|
|
resetOutValue(out, pd->dst_primitive_desc());
|
|
|
|
resetWithMatrix(wgt, weight_->getW(), pd->weights_primitive_desc());
|
|
|
|
if (biases_ && biases_->getW()) {
|
|
resetWithMatrix(bias, biases_->getW(), pd->bias_primitive_desc());
|
|
} else {
|
|
bias = nullptr;
|
|
}
|
|
}
|
|
|
|
void MKLDNNConvLayer::resetFwdPipeline(
|
|
std::vector<primitive>& pipeline,
|
|
std::shared_ptr<conv_fwd::primitive_desc>& pd,
|
|
MKLDNNMatrixPtr& in,
|
|
MKLDNNMatrixPtr& wgt,
|
|
MKLDNNMatrixPtr& bias,
|
|
MKLDNNMatrixPtr& out) {
|
|
if (bias) {
|
|
fwd_.reset(new conv_fwd(*pd, *in, *wgt, *bias, *out));
|
|
} else {
|
|
fwd_.reset(new conv_fwd(*pd, *in, *wgt, *out));
|
|
}
|
|
pipeline.push_back(*fwd_);
|
|
}
|
|
|
|
void MKLDNNConvLayer::resetBwdWgtPD(
|
|
std::shared_ptr<conv_bwdWgt::primitive_desc>& pd) {
|
|
memory::dims wgtDims, biasDims, strides, dilations, padL, padR;
|
|
loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR);
|
|
|
|
// create backward weight using input, output and weight value memory desc
|
|
CHECK(inVal_) << "Should have internal input value";
|
|
CHECK(outVal_) << "Should have internal output value";
|
|
CHECK(wgtVal_) << "Should have weight value";
|
|
algorithm algo = algorithm::convolution_direct;
|
|
padding_kind padKind = padding_kind::zero;
|
|
auto bwdWgtDesc = biasVal_ != nullptr
|
|
? conv_bwdWgt::desc(algo,
|
|
inVal_->getMemoryDesc(),
|
|
wgtVal_->getMemoryDesc(),
|
|
biasVal_->getMemoryDesc(),
|
|
outVal_->getMemoryDesc(),
|
|
strides,
|
|
padL,
|
|
padR,
|
|
padKind)
|
|
: conv_bwdWgt::desc(algo,
|
|
inVal_->getMemoryDesc(),
|
|
wgtVal_->getMemoryDesc(),
|
|
outVal_->getMemoryDesc(),
|
|
strides,
|
|
padL,
|
|
padR,
|
|
padKind);
|
|
pd.reset(new conv_bwdWgt::primitive_desc(bwdWgtDesc, engine_, *fwdPD_));
|
|
CHECK_PRIMITIVE_DESC_EQ(inVal_, pd->src_primitive_desc());
|
|
CHECK_PRIMITIVE_DESC_EQ(
|
|
outVal_,
|
|
pd->diff_dst_primitive_desc(),
|
|
"primitive desc of out value and grad should be equal");
|
|
CHECK_PRIMITIVE_DESC_EQ(
|
|
wgtVal_,
|
|
pd->diff_weights_primitive_desc(),
|
|
"primitive desc of weight value and grad should be equal");
|
|
}
|
|
|
|
void MKLDNNConvLayer::resetBwdDataPD(
|
|
std::shared_ptr<conv_bwdData::primitive_desc>& pd) {
|
|
pd = nullptr;
|
|
if (inputLayers_[0]->getOutput().grad == nullptr) {
|
|
return;
|
|
}
|
|
|
|
memory::dims wgtDims, biasDims, strides, dilations, padL, padR;
|
|
loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR);
|
|
CHECK(inVal_) << "Should have internal input value";
|
|
CHECK(outVal_) << "Should have internal output value";
|
|
// create backward data using input and output value memory desc
|
|
// but using weight memory desc with any format
|
|
auto bwdDataDesc = conv_bwdData::desc(algorithm::convolution_direct,
|
|
inVal_->getMemoryDesc(),
|
|
MKLDNNMatrix::createMemoryDesc(wgtDims),
|
|
outVal_->getMemoryDesc(),
|
|
strides,
|
|
padL,
|
|
padR,
|
|
padding_kind::zero);
|
|
pd.reset(new conv_bwdData::primitive_desc(bwdDataDesc, engine_, *fwdPD_));
|
|
CHECK_PRIMITIVE_DESC_EQ(
|
|
inVal_,
|
|
pd->diff_src_primitive_desc(),
|
|
"primitive desc of in value and grad should be equal");
|
|
CHECK_PRIMITIVE_DESC_EQ(
|
|
outVal_,
|
|
pd->diff_dst_primitive_desc(),
|
|
"primitive desc of out value and grad should be equal");
|
|
}
|
|
|
|
void MKLDNNConvLayer::resetBwdBuffers(
|
|
std::shared_ptr<conv_bwdWgt::primitive_desc>& wgtPD,
|
|
std::shared_ptr<conv_bwdData::primitive_desc>& dataPD,
|
|
MKLDNNMatrixPtr& in,
|
|
MKLDNNMatrixPtr& wgt,
|
|
MKLDNNMatrixPtr& bias,
|
|
MKLDNNMatrixPtr& out) {
|
|
CHECK(wgtPD);
|
|
resetOutGrad(out, wgtPD->diff_dst_primitive_desc());
|
|
|
|
resetWithMatrix(
|
|
wgt, weight_->getWGrad(), wgtPD->diff_weights_primitive_desc());
|
|
CHECK_PRIMITIVE_DESC_EQ(
|
|
wgtVal_,
|
|
wgt->getPrimitiveDesc(),
|
|
"primitive desc of weight grad and value should be equal");
|
|
|
|
bias = nullptr;
|
|
if (biases_ && biases_->getWGrad()) {
|
|
resetWithMatrix(
|
|
bias, biases_->getWGrad(), wgtPD->diff_bias_primitive_desc());
|
|
CHECK(bias);
|
|
CHECK_PRIMITIVE_DESC_EQ(
|
|
biasVal_,
|
|
bias->getPrimitiveDesc(),
|
|
"primitive desc of bias grad and value should be equal");
|
|
}
|
|
|
|
if (dataPD == nullptr) {
|
|
return;
|
|
}
|
|
resetInGrad(in, dataPD->diff_src_primitive_desc());
|
|
resetWgtValBwdData(dataPD, wgtValBwdData_);
|
|
}
|
|
|
|
void MKLDNNConvLayer::resetBwdPipeline(
|
|
std::vector<primitive>& pipeline,
|
|
std::shared_ptr<conv_bwdWgt::primitive_desc>& wgtPD,
|
|
std::shared_ptr<conv_bwdData::primitive_desc>& dataPD,
|
|
MKLDNNMatrixPtr& in,
|
|
MKLDNNMatrixPtr& wgt,
|
|
MKLDNNMatrixPtr& bias,
|
|
MKLDNNMatrixPtr& out) {
|
|
CHECK(inVal_);
|
|
// add bwdWgt handle
|
|
if (bias) {
|
|
bwdWgt_.reset(new conv_bwdWgt(*wgtPD, *inVal_, *out, *wgt, *bias));
|
|
} else {
|
|
bwdWgt_.reset(new conv_bwdWgt(*wgtPD, *inVal_, *out, *wgt));
|
|
}
|
|
pipeline.push_back(*bwdWgt_);
|
|
|
|
if (dataPD == nullptr) {
|
|
return;
|
|
}
|
|
if (cvtWgtVal_) {
|
|
pipeline.push_back(*cvtWgtVal_);
|
|
}
|
|
// add bwdData handle
|
|
CHECK(wgtValBwdData_) << "Should have weight memory";
|
|
bwdData_.reset(new conv_bwdData(*dataPD, *out, *wgtValBwdData_, *in));
|
|
pipeline.push_back(*bwdData_);
|
|
}
|
|
|
|
void MKLDNNConvLayer::resetWgtValBwdData(
|
|
std::shared_ptr<conv_bwdData::primitive_desc>& dataPD,
|
|
MKLDNNMatrixPtr& wgt) {
|
|
if (dataPD == nullptr) {
|
|
return;
|
|
}
|
|
|
|
// create new weight value for backward data, and create reorder if necessary
|
|
// since the primitive_desc would be different with wgtVal_
|
|
CHECK(wgtVal_) << "should have weight value";
|
|
if (dataPD->weights_primitive_desc() != wgtVal_->getPrimitiveDesc()) {
|
|
wgtValBwdData_ = MKLDNNMatrix::create(dataPD->weights_primitive_desc());
|
|
cvtWgtVal_ = MKLDNNMatrix::createReorder(wgtVal_, wgtValBwdData_);
|
|
CHECK(cvtWgtVal_);
|
|
} else {
|
|
wgtValBwdData_ = wgtVal_;
|
|
}
|
|
VLOG(MKLDNN_FMTS) << "weight value format for backward data: "
|
|
<< wgtValBwdData_->getFormat();
|
|
}
|
|
|
|
} // namespace paddle
|