You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/sequence/test_sequence_concat.py

119 lines
3.6 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import sys
sys.path.append("../")
from op_test import OpTest
from paddle import fluid
class TestSequenceConcat(OpTest):
def setLoD(self):
self.lod1 = [7, 3]
self.lod2 = [12, 8]
self.out_lod = [19, 11]
def setUp(self):
x1 = np.random.random(size=(10, 80)).astype('float64')
x2 = np.random.random(size=(20, 80)).astype('float64')
self.setLoD()
out = np.concatenate((x1[0:self.lod1[0]], x2[0:self.lod2[0]],
x1[self.lod1[0]:], x2[self.lod2[0]:]))
self.op_type = "sequence_concat"
self.inputs = {
'X': [("x1", (x1, [self.lod1])), ("x2", (x2, [self.lod2]))]
}
self.outputs = {"Out": (out, [self.out_lod])}
def test_output(self):
self.check_output()
def test_dx(self):
self.check_grad(inputs_to_check=['x1', 'x2'], output_names="Out")
class TestSequenceConcatCase2(TestSequenceConcat):
def setLoD(self):
self.lod1 = [10, 0]
self.lod2 = [12, 8]
self.out_lod = [22, 8]
class TestSequenceConcatCase3(TestSequenceConcat):
def setLoD(self):
self.lod1 = [10, 0]
self.lod2 = [20, 0]
self.out_lod = [30, 0]
class TestSequenceConcatCase4(TestSequenceConcat):
def setLoD(self):
self.lod1 = [0, 10]
self.lod2 = [0, 20]
self.out_lod = [0, 30]
class TestSequenceConcatCase5(TestSequenceConcat):
def setLoD(self):
self.lod1 = [0, 10]
self.lod2 = [20, 0]
self.out_lod = [20, 10]
class TestSequenceConcatOpError(unittest.TestCase):
def test_errors(self):
def test_input_list():
# the input type must be list
x_data = fluid.layers.data(name='x', shape=[4], dtype='float32')
fluid.layers.sequence_concat(input=x_data)
self.assertRaises(TypeError, test_input_list)
def test_variable1():
# the input element type must be Variable
x1_data = np.array([[3, 5]]).astype('float32')
y1_data = fluid.layers.data(name='y1', shape=[4], dtype='float32')
fluid.layers.sequence_concat(input=[x1_data, y1_data])
def test_variable2():
x2_data = np.array([[3, 5]]).astype('float32')
y2_data = fluid.layers.data(name='y2', shape=[4], dtype='float32')
fluid.layers.sequence_concat(input=[y2_data, x2_data])
for i in range(2):
if i == 0:
self.assertRaises(TypeError, test_variable1)
else:
self.assertRaises(TypeError, test_variable2)
def test_dtype():
# dtype must be 'float32', 'float64', 'int64'
x3_data = fluid.layers.data(name="x3", shape=[3, 5], dtype='int32')
y3_data = fluid.layers.data(name="y3", shape=[3, 5], dtype='int16')
input_list = [x3_data, y3_data]
fluid.layers.sequence_concat(input=input_list)
self.assertRaises(TypeError, test_dtype)
if __name__ == '__main__':
unittest.main()