You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
188 lines
7.3 KiB
188 lines
7.3 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
import unittest
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.core as core
|
|
from paddle.fluid.op import Operator
|
|
from paddle.fluid import compiler, Program, program_guard
|
|
from op_test import OpTest, skip_check_grad_ci
|
|
|
|
|
|
class TestAddcmulLayer(unittest.TestCase):
|
|
def setUp(self):
|
|
self._dtype = "float64"
|
|
self.input = np.random.uniform(0.1, 1, [3, 100]).astype(self._dtype)
|
|
self.tensor1 = np.random.uniform(0.1, 1, [100]).astype(self._dtype)
|
|
self.tensor2 = np.random.uniform(0.1, 1, [3, 100]).astype(self._dtype)
|
|
|
|
def static(self, value=1.0):
|
|
prog = fluid.Program()
|
|
with fluid.program_guard(prog):
|
|
input = fluid.data(name="input", dtype=self._dtype, shape=[3, 100])
|
|
tensor1 = fluid.data(name="tensor1", dtype=self._dtype, shape=[100])
|
|
tensor2 = fluid.data(
|
|
name="tensor2", dtype=self._dtype, shape=[3, 100])
|
|
out = paddle.addcmul(input, tensor1, tensor2, value)
|
|
|
|
exe = fluid.Executor(self._place)
|
|
return exe.run(feed={
|
|
"input": self.input,
|
|
"tensor1": self.tensor1,
|
|
"tensor2": self.tensor2
|
|
},
|
|
program=prog,
|
|
fetch_list=[out])[0]
|
|
|
|
def dynamic(self, value=1.0):
|
|
with fluid.dygraph.guard(self._place):
|
|
input = fluid.dygraph.to_variable(self.input)
|
|
tensor1 = fluid.dygraph.to_variable(self.tensor1)
|
|
tensor2 = fluid.dygraph.to_variable(self.tensor2)
|
|
out = paddle.addcmul(input, tensor1, tensor2, value)
|
|
return out.numpy()
|
|
|
|
def numpy(self, value=1.0):
|
|
self.out = np.add(self.input,
|
|
np.multiply(self.tensor1, self.tensor2) * value)
|
|
return self.out
|
|
|
|
def test_equal(self):
|
|
places = []
|
|
if fluid.core.is_compiled_with_cuda():
|
|
places.append(fluid.CUDAPlace(0))
|
|
for place in places:
|
|
self._place = place
|
|
self.assertTrue(np.allclose(self.numpy(), self.static()))
|
|
self.assertTrue(
|
|
np.allclose(
|
|
self.numpy(value=0.9), self.dynamic(value=0.9)))
|
|
self.assertTrue(
|
|
np.allclose(
|
|
self.numpy(value=0), self.dynamic(value=0)))
|
|
|
|
|
|
class TestAddcmul(unittest.TestCase):
|
|
def test_addcmul(self):
|
|
program = Program()
|
|
with program_guard(program):
|
|
data_shape = [3, 64, 64]
|
|
input = fluid.data(name='in', shape=data_shape, dtype='float32')
|
|
tensor1 = fluid.data(name='t1', shape=data_shape, dtype='float32')
|
|
tensor2 = fluid.data(name='t2', shape=data_shape, dtype='float32')
|
|
|
|
out = paddle.addcmul(input, tensor1, tensor2)
|
|
self.assertEqual(out.shape, input.shape)
|
|
|
|
def test_addcmul_with_broadcast0(self):
|
|
program = Program()
|
|
with program_guard(program):
|
|
input = fluid.data(name='in', shape=[3, 100], dtype='float32')
|
|
tensor1 = fluid.data(name='t1', shape=[3, 100], dtype='float32')
|
|
tensor2 = fluid.data(name='t2', shape=[100], dtype='float32')
|
|
|
|
out = paddle.addcmul(input, tensor1, tensor2)
|
|
self.assertEqual(out.shape, input.shape)
|
|
|
|
def test_addcmul_with_broadcast1(self):
|
|
program = Program()
|
|
with program_guard(program):
|
|
input = fluid.data(name='in', shape=[4, 100], dtype='float32')
|
|
tensor1 = fluid.data(name='t1', shape=[100], dtype='float32')
|
|
tensor2 = fluid.data(name='t2', shape=[4, 100], dtype='float32')
|
|
|
|
out = paddle.addcmul(input, tensor1, tensor2)
|
|
self.assertEqual(out.shape, input.shape)
|
|
|
|
def test_addcmul_with_broadcast2(self):
|
|
program = Program()
|
|
with program_guard(program):
|
|
input = fluid.data(name='in', shape=[4, 100], dtype='float32')
|
|
tensor1 = fluid.data(name='t1', shape=[100], dtype='float32')
|
|
tensor2 = fluid.data(name='t2', shape=[100], dtype='float32')
|
|
|
|
out = paddle.addcmul(input, tensor1, tensor2)
|
|
self.assertEqual(out.shape, input.shape)
|
|
|
|
|
|
class InvalidInputTest(unittest.TestCase):
|
|
def test_error(self):
|
|
def test_invalid_input():
|
|
program = Program()
|
|
with program_guard(program):
|
|
input = [20, 20]
|
|
tensor1 = fluid.data(
|
|
name='tensor1', shape=[20, 20], dtype='float32')
|
|
tensor2 = fluid.data(
|
|
name='tensor2', shape=[20, 20], dtype='float32')
|
|
out = paddle.addcmul(input, tensor1, tensor2)
|
|
|
|
self.assertRaises(TypeError, test_invalid_input)
|
|
|
|
def test_invalid_tensor1():
|
|
program = Program()
|
|
with program_guard(program):
|
|
input = fluid.data(
|
|
name='input', shape=[20, 20], dtype='float32')
|
|
tensor1 = [20, 20]
|
|
tensor2 = fluid.data(
|
|
name='tensor2', shape=[20, 20], dtype='float32')
|
|
out = paddle.addcmul(input, tensor1, tensor2)
|
|
|
|
self.assertRaises(TypeError, test_invalid_tensor1)
|
|
|
|
def test_invalid_tensor2():
|
|
program = Program()
|
|
with program_guard(program):
|
|
input = fluid.data(
|
|
name='input', shape=[20, 20], dtype='float32')
|
|
tensor1 = fluid.data(
|
|
name='tensor1', shape=[20, 20], dtype='float32')
|
|
tensor2 = [20, 20]
|
|
out = paddle.addcmul(input, tensor1, tensor2)
|
|
|
|
self.assertRaises(TypeError, test_invalid_tensor2)
|
|
|
|
def test_invalid_value_int():
|
|
program = Program()
|
|
with program_guard(program):
|
|
input = fluid.data(
|
|
name='input', shape=[20, 20], dtype='float32')
|
|
tensor1 = fluid.data(
|
|
name='tensor1', shape=[20, 20], dtype='float32')
|
|
tensor2 = fluid.data(
|
|
name='tensor2', shape=[20, 20], dtype='float32')
|
|
out = paddle.addcmul(input, tensor1, tensor2, value=1)
|
|
|
|
self.assertRaises(TypeError, test_invalid_value_int)
|
|
|
|
def test_invalid_value_float():
|
|
program = Program()
|
|
with program_guard(program):
|
|
input = fluid.data(name='input', shape=[20, 20], dtype='int32')
|
|
tensor1 = fluid.data(
|
|
name='tensor1', shape=[20, 20], dtype='int32')
|
|
tensor2 = fluid.data(
|
|
name='tensor2', shape=[20, 20], dtype='int32')
|
|
out = paddle.addcmul(input, tensor1, tensor2, value=1.0)
|
|
|
|
self.assertRaises(TypeError, test_invalid_value_float)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|