You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/framework/details/analysis_var_pass_test.cc

471 lines
14 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/analysis_var_pass.h"
#include <algorithm>
#include <iostream>
#include <iterator>
#include "glog/logging.h"
#include "gtest/gtest.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
namespace paddle {
namespace framework {
class DummyOp : public OperatorBase {
public:
DummyOp(const std::string& type, const VariableNameMap& inputs,
const VariableNameMap& outputs, const AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
private:
void RunImpl(const Scope& scope,
const platform::Place& place) const override {}
};
class SumOpMaker : public OpProtoAndCheckerMaker {
public:
void Make() {
AddInput("X", "").AsDuplicable();
AddOutput("Out", "");
AddComment("");
}
};
class AssignOpMaker : public OpProtoAndCheckerMaker {
public:
void Make() {
AddInput("X", "").AsDuplicable();
AddOutput("Out", "");
AddComment("");
}
};
class DummyVarTypeInference : public VarTypeInference {
public:
void operator()(const OpDesc& op_desc, BlockDesc* block) const override {
auto& inputs = op_desc.Input("X");
auto type = block->Var(inputs.front())->GetType();
auto out_var_name = op_desc.Output("Out").front();
block->Var(out_var_name)->SetType(type);
}
};
} // namespace framework
} // namespace paddle
REGISTER_OPERATOR(sum, paddle::framework::DummyOp,
paddle::framework::SumOpMaker,
paddle::framework::DummyVarTypeInference);
REGISTER_OPERATOR(assign, paddle::framework::DummyOp,
paddle::framework::AssignOpMaker,
paddle::framework::DummyVarTypeInference);
REGISTER_OPERATOR(dummy, paddle::framework::DummyOp,
paddle::framework::SumOpMaker,
paddle::framework::DummyVarTypeInference);
/*
https://en.wikipedia.org/wiki/Live_variable_analysis
Create a customed classical dependency graph, left row is the instruction
number.
1. a = 1
2. b = a
3. c = a
4. d = b + c
5. e = d
a--------+
| |
b c
| |
d--------+
|
e
Then analysis these variable's liveness range
*/
namespace paddle {
namespace framework {
namespace details {
static inline bool IsSameDesc(OpDesc* op1, OpDesc* op2) {
return op1->Type() == op2->Type() && op1->Inputs() == op2->Inputs() &&
op1->Outputs() == op2->Outputs();
}
inline static ProgramDesc FillProgramDesc() {
ProgramDesc prog;
prog.MutableBlock(0)->Var("a")->SetType(proto::VarType::LOD_TENSOR);
prog.MutableBlock(0)->Var("b")->SetType(proto::VarType::LOD_TENSOR);
prog.MutableBlock(0)->Var("c")->SetType(proto::VarType::LOD_TENSOR);
prog.MutableBlock(0)->Var("d")->SetType(proto::VarType::LOD_TENSOR);
prog.MutableBlock(0)->Var("e")->SetType(proto::VarType::LOD_TENSOR);
{
auto* op = prog.MutableBlock(0)->AppendOp();
op->SetType("assign");
op->SetInput("X", {"a"});
op->SetOutput("Out", {"b"});
}
{
auto* op = prog.MutableBlock(0)->AppendOp();
op->SetType("assign");
op->SetInput("X", {"a"});
op->SetOutput("Out", {"c"});
}
{
auto* op = prog.MutableBlock(0)->AppendOp();
op->SetType("sum");
op->SetInput("X", {"b", "c"});
op->SetOutput("Out", {"d"});
}
{
auto* op = prog.MutableBlock(0)->AppendOp();
op->SetType("assign");
op->SetInput("X", {"d"});
op->SetOutput("Out", {"e"});
}
return prog;
}
template <typename Container>
inline static std::string DebugString(const Container& c) {
std::stringstream ss;
for (auto& item : c) {
ss << item << " ";
}
return ss.str();
}
TEST(CFGGraph, IRGraph) {
// prepare ir graph
auto prog = FillProgramDesc();
ir::Graph graph(prog);
const std::vector<OpDesc*>* all_op_descs =
new std::vector<OpDesc*>(prog.Block(0).AllOps());
graph.Set(details::kAllOpDescs, all_op_descs); // take ownership
ControlFlowGraph cfg(graph);
cfg.LiveVariableAnalysis();
// test assign op
ASSERT_TRUE((std::set<std::string>{"a"} == cfg.LiveIn(cfg.Ops()[0])));
ASSERT_TRUE((std::set<std::string>{"a", "b"} == cfg.LiveOut(cfg.Ops()[0])));
// test assign op
ASSERT_TRUE((std::set<std::string>{"a", "b"} == cfg.LiveIn(cfg.Ops()[1])));
ASSERT_TRUE((std::set<std::string>{"b", "c"} == cfg.LiveOut(cfg.Ops()[1])));
// test sum op
ASSERT_TRUE((std::set<std::string>{"b", "c"} == cfg.LiveIn(cfg.Ops()[2])));
ASSERT_TRUE((std::set<std::string>{"d"} == cfg.LiveOut(cfg.Ops()[2])));
// test assign op
ASSERT_TRUE((std::set<std::string>{"d"} == cfg.LiveIn(cfg.Ops()[3])));
ASSERT_TRUE((std::set<std::string>{} == cfg.LiveOut(cfg.Ops()[3])));
}
// 1. normal test
TEST(SortOpLikeDescOrder, NormalTest) {
auto prog = FillProgramDesc();
ir::Graph graph(prog);
const std::vector<OpDesc*>* all_op_descs =
new std::vector<OpDesc*>(prog.Block(0).AllOps());
graph.Set(details::kAllOpDescs, all_op_descs); // take ownership
auto nodes = SortOpLikeDescOrder(graph);
auto op_descs = prog.Block(0).AllOps();
for (size_t i = 0; i < nodes.size(); ++i) {
auto node = nodes[i];
auto op_desc = op_descs[i];
ASSERT_TRUE(IsSameDesc(node->Op(), op_desc));
}
}
// 2. remove some op_desc
TEST(SortOpLikeDescOrder, RemoveOpDesc) {
auto prog = FillProgramDesc();
ir::Graph graph(prog);
const std::vector<OpDesc*>* all_op_descs =
new std::vector<OpDesc*>(prog.Block(0).AllOps());
graph.Set(details::kAllOpDescs, all_op_descs); // take ownership
auto nodes = graph.Nodes();
auto op_descs = prog.Block(0).AllOps();
ir::Node* found_node = nullptr;
for (auto node : nodes) {
if (node->IsOp() && node->outputs.back()->Name() == "e") {
found_node = node;
break;
}
}
PADDLE_ENFORCE(found_node != nullptr);
for (auto it = op_descs.begin(); it != op_descs.end();) {
if (IsSameDesc(*it, found_node->Op())) {
it = op_descs.erase(it);
} else {
++it;
}
}
auto find_node_in_graph = [&](std::string s) {
ir::Node* ret = nullptr;
for (auto n : graph.Nodes()) {
if (n->Name() == s) {
ret = n;
break;
}
}
PADDLE_ENFORCE(ret != nullptr);
return ret;
};
ir::Node* e = find_node_in_graph("e");
ir::Node* d = find_node_in_graph("d");
std::remove(d->outputs.begin(), d->outputs.end(), found_node);
graph.RemoveNode(found_node);
graph.RemoveNode(e);
// other node keeps the same order
auto remain_nodes = SortOpLikeDescOrder(graph);
for (size_t i = 0; i < remain_nodes.size(); ++i) {
auto node = remain_nodes[i];
auto op_desc = op_descs[i];
ASSERT_TRUE(IsSameDesc(node->Op(), op_desc));
}
}
// 3. add some op_desc
TEST(SortOpLikeDescOrder, AddOpDesc) {
auto prog = FillProgramDesc();
const std::vector<OpDesc*>* all_op_descs =
new std::vector<OpDesc*>(prog.Block(0).AllOps());
ir::Graph graph(prog);
auto find_node_in_graph = [&](std::string s) {
ir::Node* ret = nullptr;
for (auto n : graph.Nodes()) {
if (n->Name() == s) {
ret = n;
break;
}
}
PADDLE_ENFORCE(ret != nullptr);
return ret;
};
// cached desc different with real one
// mimic the intermidiete pass modify the programdesc.
graph.Set(details::kAllOpDescs, all_op_descs); // take ownership
auto op_descs = prog.Block(0).AllOps();
auto op = prog.MutableBlock(0)->AppendOp();
prog.MutableBlock(0)->Var("d1")->SetType(proto::VarType::LOD_TENSOR);
op->SetType("sum");
op->SetInput("X", {"b", "c"});
op->SetOutput("Out", {"d1"});
ir::Node* node = graph.CreateOpNode(op);
ir::Node* d1 = graph.CreateVarNode(prog.MutableBlock(0)->Var("d1"));
ir::Node* b = find_node_in_graph("b");
ir::Node* c = find_node_in_graph("c");
node->outputs.emplace_back(d1);
node->inputs.emplace_back(b);
node->inputs.emplace_back(c);
d1->inputs.emplace_back(node);
b->outputs.emplace_back(node);
c->outputs.emplace_back(node);
op_descs.insert(op_descs.begin() + 4, op);
auto nodes = SortOpLikeDescOrder(graph);
for (size_t i = 0; i < nodes.size(); ++i) {
auto node = nodes[i];
auto op_desc = op_descs[i];
ASSERT_TRUE(IsSameDesc(node->Op(), op_desc));
}
}
// 4. add and delete some op_desc
TEST(SortOpLikeDescOrder, AddAndDeleteOpDesc) {
auto prog = FillProgramDesc();
ir::Graph graph(prog);
const std::vector<OpDesc*>* all_op_descs =
new std::vector<OpDesc*>(prog.Block(0).AllOps());
graph.Set(details::kAllOpDescs, all_op_descs); // take ownership
auto find_node_in_graph = [&](std::string s) {
ir::Node* ret = nullptr;
for (auto n : graph.Nodes()) {
if (n->Name() == s) {
ret = n;
break;
}
}
PADDLE_ENFORCE(ret != nullptr);
return ret;
};
// remove sum node
auto op_descs = prog.Block(0).AllOps();
ir::Node* found_node = nullptr;
auto nodes = graph.Nodes();
for (auto node : nodes) {
if (node->Name() == "sum") {
found_node = node;
break;
}
}
PADDLE_ENFORCE(found_node != nullptr);
for (auto it = op_descs.begin(); it != op_descs.end();) {
if (IsSameDesc(*it, found_node->Op())) {
it = op_descs.erase(it);
} else {
++it;
}
}
{
ir::Node* d = find_node_in_graph("d");
ir::Node* c = find_node_in_graph("c");
ir::Node* e = find_node_in_graph("e");
std::remove(d->outputs.begin(), d->outputs.end(), found_node);
std::remove(c->outputs.begin(), c->outputs.end(), found_node);
ir::Node* pending_op = found_node->outputs[0]->outputs[0];
graph.RemoveNode(e);
graph.RemoveNode(pending_op);
graph.RemoveNode(found_node);
}
// add node
auto op = prog.MutableBlock(0)->AppendOp();
prog.MutableBlock(0)->Var("d1")->SetType(proto::VarType::LOD_TENSOR);
op->SetType("sum");
op->SetInput("X", {"b", "c"});
op->SetOutput("Out", {"d1"});
{
ir::Node* node = graph.CreateOpNode(op);
ir::Node* d1 = graph.CreateVarNode(prog.MutableBlock(0)->Var("d1"));
ir::Node* b = find_node_in_graph("b");
ir::Node* c = find_node_in_graph("c");
node->outputs.emplace_back(d1);
node->inputs.emplace_back(b);
node->inputs.emplace_back(c);
b->outputs.emplace_back(node);
c->outputs.emplace_back(node);
}
op_descs.insert(op_descs.begin() + 2, op);
// check the order
auto mynodes = SortOpLikeDescOrder(graph);
for (size_t i = 0; i < mynodes.size(); ++i) {
auto node = mynodes[i];
auto op_desc = op_descs[i];
ASSERT_TRUE(IsSameDesc(node->Op(), op_desc));
}
}
// 5. add and replace some op_desc inplace.
TEST(SortOpLikeDescOrder, AddAndReplaceOpDescInplace) {
auto prog = FillProgramDesc();
ir::Graph graph(prog);
const std::vector<OpDesc*>* all_op_descs =
new std::vector<OpDesc*>(prog.Block(0).AllOps());
graph.Set(details::kAllOpDescs, all_op_descs); // take ownership
auto find_node_in_graph = [&](std::string s) {
ir::Node* ret = nullptr;
for (auto n : graph.Nodes()) {
if (n->Name() == s) {
ret = n;
break;
}
}
PADDLE_ENFORCE(ret != nullptr);
return ret;
};
auto op_descs = prog.Block(0).AllOps();
// add node
auto op = prog.MutableBlock(0)->AppendOp();
prog.MutableBlock(0)->Var("d1")->SetType(proto::VarType::LOD_TENSOR);
op->SetType("sum");
op->SetInput("X", {"b", "c"});
op->SetOutput("Out", {"d1"});
{
ir::Node* node = graph.CreateOpNode(op);
ir::Node* d1 = graph.CreateVarNode(prog.MutableBlock(0)->Var("d1"));
ir::Node* b = find_node_in_graph("b");
ir::Node* c = find_node_in_graph("c");
node->outputs.emplace_back(d1);
node->inputs.emplace_back(b);
node->inputs.emplace_back(c);
d1->inputs.emplace_back(node);
b->outputs.emplace_back(node);
c->outputs.emplace_back(node);
}
op_descs.emplace_back(op);
// replace op_desc inplace
auto nodes = graph.Nodes();
ir::Node* found_node = nullptr;
for (auto node : nodes) {
if (node->IsOp() && node->Op() && node->Name() == "assign") {
if (node->outputs.size() == 1 && node->outputs[0]->Name() == "e") {
found_node = node;
break;
}
}
}
{
ir::Node* d = find_node_in_graph("d");
ir::Node* e = find_node_in_graph("e");
std::remove(d->outputs.begin(), d->outputs.end(), found_node);
std::remove(e->inputs.begin(), e->inputs.end(), found_node);
graph.RemoveNode(found_node);
}
op_descs.erase(op_descs.begin() + 3);
auto replace_op = prog.MutableBlock(0)->AppendOp();
replace_op->SetType("sum");
replace_op->SetInput("X", {"d", "d1"});
replace_op->SetOutput("Out", {"e"});
{
ir::Node* sum2 = graph.CreateOpNode(replace_op);
ir::Node* e = find_node_in_graph("e");
ir::Node* d = find_node_in_graph("d");
ir::Node* d1 = find_node_in_graph("d1");
sum2->inputs.emplace_back(d);
sum2->inputs.emplace_back(d1);
sum2->outputs.emplace_back(e);
e->inputs.emplace_back(sum2);
d->outputs.emplace_back(sum2);
d1->outputs.emplace_back(sum2);
}
op_descs.emplace_back(replace_op);
// compare op order
auto graph_nodes = SortOpLikeDescOrder(graph);
for (size_t i = 0; i < graph_nodes.size(); ++i) {
auto node = graph_nodes[i];
auto op_desc = op_descs[i];
ASSERT_TRUE(IsSameDesc(node->Op(), op_desc));
}
}
} // namespace details
} // namespace framework
} // namespace paddle