You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/math/math_function.h

139 lines
4.9 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#ifdef PADDLE_WITH_MKLML
#include <mkl_cblas.h>
#include <mkl_lapacke.h>
#include <mkl_vml_functions.h>
#endif
#ifdef PADDLE_USE_OPENBLAS
#include <cblas.h>
#include <lapacke.h>
#endif
#ifndef LAPACK_FOUND
extern "C" {
#include <cblas.h>
int LAPACKE_sgetrf(int matrix_layout, int m, int n, float* a, int lda,
int* ipiv);
int LAPACKE_dgetrf(int matrix_layout, int m, int n, double* a, int lda,
int* ipiv);
int LAPACKE_sgetri(int matrix_layout, int n, float* a, int lda,
const int* ipiv);
int LAPACKE_dgetri(int matrix_layout, int n, double* a, int lda,
const int* ipiv);
}
#endif
#include <cmath>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace operators {
namespace math {
// Support continuous memory now
// If transA = N, and transB = N
// Then matrixA: M * K, matrixB: K * N, matrixC : M * N
// For more detailed info, please refer to
// http://www.netlib.org/lapack/explore-html/d4/de2/sgemm_8f.html
template <typename DeviceContext, typename T>
void gemm(const DeviceContext& context, const CBLAS_TRANSPOSE transA,
const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
const T alpha, const T* A, const T* B, const T beta, T* C);
// gemm wrapper with stride args for matrix uncontinuous in memory
template <typename DeviceContext, typename T>
void gemm(const DeviceContext& context, const bool transA, const bool transB,
const int M, const int N, const int K, const T alpha, const T* A,
const int lda, const T* B, const int ldb, const T beta, T* C,
const int ldc);
// matrix multiply with continuous memory
template <typename DeviceContext, typename T>
void matmul(const DeviceContext& context, const framework::Tensor& matrix_a,
bool trans_a, const framework::Tensor& matrix_b, bool trans_b,
T alpha, framework::Tensor* matrix_out, T beta);
// Batched gemm
template <typename DeviceContext, typename T>
void batched_gemm(const DeviceContext& context, const CBLAS_TRANSPOSE transA,
const CBLAS_TRANSPOSE transB, const int M, const int N,
const int K, const T alpha, const T* A, const T* B,
const T beta, T* C, const int batchCount, const int strideA,
const int strideB);
template <typename DeviceContext, typename T>
void gemv(const DeviceContext& context, const bool trans_a, const int M,
const int N, const T alpha, const T* A, const T* B, const T beta,
T* C);
template <typename DeviceContext, typename T>
void axpy(const DeviceContext& context, const int n, const T alpha, const T* x,
T* y);
template <typename DeviceContext, typename T, int Rank>
struct Transpose {
void operator()(const DeviceContext& context, const framework::Tensor& in,
framework::Tensor* out, const std::vector<int>& axis);
};
template <typename DeviceContext, typename T>
struct SetConstant {
void operator()(const DeviceContext& context, framework::Tensor* tensor,
T num);
};
template <typename Place>
void set_constant_with_place(const platform::DeviceContext& context,
framework::Tensor* tensor, float value);
void set_constant(const platform::DeviceContext& context,
framework::Tensor* tensor, float value);
template <typename DeviceContext, typename T>
struct RowwiseAdd {
void operator()(const DeviceContext& context, const framework::Tensor& input,
const framework::Tensor& vec, framework::Tensor* output);
};
template <typename DeviceContext, typename T>
struct ColwiseSum {
void operator()(const DeviceContext& context, const framework::Tensor& input,
framework::Tensor* vec);
};
template <typename DeviceContext, typename T>
struct RowwiseSum {
void operator()(const DeviceContext& context, const framework::Tensor& input,
framework::Tensor* vec);
};
template <typename DeviceContext, typename T>
struct RowwiseMean {
void operator()(const DeviceContext& context, const framework::Tensor& input,
framework::Tensor* vec);
};
} // namespace math
} // namespace operators
} // namespace paddle