You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/v2/fluid/clip.py

207 lines
6.8 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import layers
import framework
from . import core
__all__ = [
'GradientClipByValue',
'ErrorClipByValue',
'append_gradient_clip_ops',
'error_clip_callback',
]
class BaseErrorClipAttr(object):
def append_clip_op(self, block, grad_name):
raise NotImplementedError()
class ErrorClipByValue(BaseErrorClipAttr):
def __init__(self, max, min=None):
max = float(max)
if min is None:
min = -max
else:
min = float(min)
self.max = max
self.min = min
def append_clip_op(self, block, grad_name):
clip_op_desc = block.desc.append_op()
clip_op_desc.set_type("clip")
clip_op_desc.set_input("X", [grad_name])
clip_op_desc.set_output("Out", [grad_name])
clip_op_desc.set_attr("min", self.min)
clip_op_desc.set_attr("max", self.max)
def error_clip_callback(block, context):
# the context is a grad_to_var map
grad_to_var = context
op_desc = block.desc.op(block.desc.op_size() - 1)
for grad_n in filter(lambda n: grad_to_var.has_key(n),
op_desc.output_arg_names()):
fwd_var = block.var_recursive(grad_to_var[grad_n])
error_clip = getattr(fwd_var, "error_clip", None)
if not (error_clip is None or isinstance(error_clip,
BaseErrorClipAttr)):
raise TypeError(
"Variable's error_clip should be an instance of BaseErrorClipAttr or None."
)
if error_clip is not None:
error_clip.append_clip_op(block, grad_n)
class BaseGradientClipAttr(object):
def process_context(self, context, param, grad):
raise NotImplementedError()
def create_operators(self, param, grad):
raise NotImplementedError()
class NullGradientClipAttr(BaseGradientClipAttr):
def process_context(self, context, param, grad):
pass
def create_operators(self, param, grad):
return param, grad
class GradientClipByValue(BaseGradientClipAttr):
def __init__(self, max, min=None):
max = float(max)
if min is None:
min = -max
else:
min = float(min)
self.max = max
self.min = min
def process_context(self, context, param, grad):
pass
def create_operators(self, param, grad):
new_grad = layers.clip(x=grad, min=self.min, max=self.max)
return param, new_grad
class GradientClipByNorm(BaseGradientClipAttr):
def __init__(self, clip_norm):
self.clip_norm = clip_norm
def process_context(self, context, param, grad):
pass
def create_operators(self, param, grad):
new_grad = layers.clip_by_norm(x=grad, max_norm=self.clip_norm)
return param, new_grad
class GradientClipByGlobalNorm(BaseGradientClipAttr):
global_norm_var = None
local_norm_var = None
clip_norm_var = None
scale_var = None
@classmethod
def init(cls, clip_norm):
if not (isinstance(clip_norm, int) or isinstance(clip_norm, float)):
raise TypeError("The 'clip_norm' must be a value of int or float")
cls.global_norm_var = layers.fill_constant(
shape=[1], dtype="float32", value=0.0)
cls.local_norm_var = framework.default_main_program().block(
0).create_var(
name=framework.unique_name("local_norm"),
dtype="float32",
persistable=False)
cls.clip_norm_var = layers.fill_constant(
shape=[1], dtype="float32", value=clip_norm)
@classmethod
def check_init(cls):
if not (isinstance(cls.global_norm_var, framework.Variable) and
isinstance(cls.local_norm_var, framework.Variable) and
isinstance(cls.clip_norm_var, framework.Variable)):
raise ValueError(
"Class 'GradientClipByGlobalNorm' has not been properly initialized. \
Please call GradientClipByGlobalNorm.init() first.")
def process_context(self, context, param, grad):
cls = self.__class__
cls.check_init()
cls.local_norm_var = layers.reduce_sum(
input=layers.pow(x=grad, factor=2.0))
layers.sums(
input=[cls.local_norm_var, cls.global_norm_var],
out=[cls.global_norm_var])
def create_operators(self, param, grad):
cls = self.__class__
cls.check_init()
if cls.scale_var is None:
layers.sqrt(x=cls.global_norm_var, out=cls.global_norm_var)
cls.scale_var = layers.elementwise_div(
x=cls.clip_norm_var,
y=layers.elementwise_max(
x=cls.clip_norm_var, y=cls.global_norm_var))
assert cls.scale_var.shape == (1L, )
new_grad = layers.elementwise_mul(x=grad, y=cls.scale_var)
return param, new_grad
def gradient_clip_by_global_norm(clip_norm, param_list=None, program=None):
if program is None:
program = framework.default_main_program()
if param_list is None:
param_list = program.block(0).all_parameters()
if all(isinstance(elem, basestring) for elem in param_list):
param_list = [program.block(0).var(elem) for elem in param_list]
if not all(isinstance(elem, framework.Parameter) for elem in param_list):
raise TypeError(
"'param_list' should be a list of Parameter or basestring(parameter's name)."
)
GradientClipByGlobalNorm.init(clip_norm)
for param in param_list:
param.gradient_clip_attr = GradientClipByGlobalNorm()
def append_gradient_clip_ops(param_grad):
context = dict()
create_op_callbacks = []
for p, g in param_grad:
clip_attr = getattr(p, 'gradient_clip_attr', NullGradientClipAttr())
if clip_attr is None:
clip_attr = NullGradientClipAttr()
if not isinstance(clip_attr, BaseGradientClipAttr):
raise TypeError(
"clip attribute should be an instance of BaseGradientClipAttr")
clip_attr.process_context(context=context, param=p, grad=g)
create_op_callbacks.append(
functools.partial(
clip_attr.create_operators, param=p, grad=g))
return [each_callback() for each_callback in create_op_callbacks]
ClipByValue = GradientClipByValue