You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
230 lines
8.2 KiB
230 lines
8.2 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/cond_op.h"
|
|
|
|
#include <cstring>
|
|
#include <sstream>
|
|
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/operators/gather.h"
|
|
#include "paddle/operators/net_op.h"
|
|
#include "paddle/operators/scatter.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Scope = framework::Scope;
|
|
using Variable = framework::Variable;
|
|
using Tensor = framework::Tensor;
|
|
using LoDTensor = framework::LoDTensor;
|
|
using DDim = framework::DDim;
|
|
|
|
void CondOp::CreateScope(const Scope& scope) const {
|
|
auto sub_scopes_var = scope.FindVar("SubScopes");
|
|
PADDLE_ENFORCE_NOT_NULL(sub_scopes_var,
|
|
"Output(SubScopes) of CondOp should not be null.");
|
|
auto sub_scopes = sub_scopes_var->GetMutable<std::vector<Scope*>>();
|
|
auto& sub_scope = scope.NewScope();
|
|
sub_scopes->push_back(&sub_scope);
|
|
}
|
|
|
|
void CondOp::CreateIndexTensor(const Scope& scope) const {
|
|
auto index_tensors_var = scope.FindVar("IndexTensors");
|
|
PADDLE_ENFORCE_NOT_NULL(index_tensors_var,
|
|
"Output(IndexTensors) of CondOp should not be null.");
|
|
auto& index_tensors =
|
|
*index_tensors_var->GetMutable<std::vector<LoDTensor>>();
|
|
index_tensors.push_back(LoDTensor());
|
|
}
|
|
|
|
void CondOp::InferShape(const Scope& scope) const {
|
|
auto sub_scopes_var = scope.FindVar("SubScopes");
|
|
PADDLE_ENFORCE_NOT_NULL(sub_scopes_var,
|
|
"Output(SubScopes) of CondOp should not be null.");
|
|
auto& sub_scopes = *sub_scopes_var->GetMutable<std::vector<Scope*>>();
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
// Create two sub scopes for true and false branches
|
|
// sub_scopes[0] for the true branch and sub_scopes[1] for the false
|
|
// branch
|
|
CreateScope(scope);
|
|
|
|
// Create two tensors for true and false indices
|
|
// index_tensors[0] for the true branch and index_tensors[1] for the false
|
|
// branch
|
|
CreateIndexTensor(scope);
|
|
|
|
PADDLE_ENFORCE(!Inputs("Xs").empty(),
|
|
"Inputs(Xs) of CondOp can't be empty.");
|
|
for (auto& input : Inputs("Xs")) {
|
|
// Create a new tensor in sub-scope for input-type tensor
|
|
Variable* v = sub_scopes[i]->NewVar(input);
|
|
LoDTensor* sub_input = v->GetMutable<LoDTensor>();
|
|
sub_input->Resize(scope.FindVar(input)->GetMutable<LoDTensor>()->dims());
|
|
}
|
|
|
|
for (auto& output : (*sub_net_op_[i]).Outputs()) {
|
|
for (auto& var_name : output.second) {
|
|
sub_scopes[i]->NewVar(var_name);
|
|
}
|
|
}
|
|
|
|
// each net calls InferShape
|
|
sub_net_op_[i]->InferShape(*sub_scopes[i]);
|
|
}
|
|
|
|
for (auto& output : Outputs("Outs")) {
|
|
LoDTensor* tensor_t_out =
|
|
sub_scopes[0]->FindVar(output)->GetMutable<LoDTensor>();
|
|
PADDLE_ENFORCE_NOT_NULL(tensor_t_out, "True output should not be NULL");
|
|
LoDTensor* tensor_f_out =
|
|
sub_scopes[1]->FindVar(output)->GetMutable<LoDTensor>();
|
|
PADDLE_ENFORCE_NOT_NULL(tensor_f_out, "False output should not be NULL");
|
|
|
|
auto* tensor_out_var = scope.FindVar(output);
|
|
PADDLE_ENFORCE_NOT_NULL(tensor_out_var, "Output not found");
|
|
LoDTensor* tensor_out = tensor_out_var->GetMutable<LoDTensor>();
|
|
PADDLE_ENFORCE_NOT_NULL(tensor_t_out,
|
|
"True output tensor should not be NULL");
|
|
|
|
// check output size should be same
|
|
PADDLE_ENFORCE_EQ(tensor_t_out->dims(), tensor_f_out->dims(),
|
|
"Outputs not of the same shape");
|
|
tensor_out->Resize(tensor_t_out->dims());
|
|
// tensor_out->mutable_data<float>(tensor_out->dims(),
|
|
// platform::CPUPlace());
|
|
tensor_out->mutable_data<float>(platform::CPUPlace());
|
|
}
|
|
}
|
|
|
|
void CondOp::Run(const Scope& scope,
|
|
const platform::DeviceContext& dev_ctx) const {
|
|
auto* sub_scopes_var = scope.FindVar("SubScopes");
|
|
PADDLE_ENFORCE_NOT_NULL(sub_scopes_var,
|
|
"Output(SubScopes) of CondOp should not be null.");
|
|
auto sub_scopes = sub_scopes_var->Get<std::vector<Scope*>>();
|
|
auto* index_tensors_var = scope.FindVar("IndexTensors");
|
|
PADDLE_ENFORCE_NOT_NULL(index_tensors_var,
|
|
"Output(IndexTensors) of CondOp should not be null.");
|
|
auto index_tensors = index_tensors_var->Get<std::vector<LoDTensor>>();
|
|
|
|
std::string cond_name = Input("Cond");
|
|
Variable* cond_var = scope.FindVar(cond_name);
|
|
PADDLE_ENFORCE_NOT_NULL(cond_var,
|
|
"Input(Cond) of CondOp should not be null.");
|
|
const LoDTensor* cond = cond_var->GetMutable<LoDTensor>();
|
|
|
|
// Step 1: get the true/false index at runtime
|
|
// index_[0]: vector<int>, contains all index for cond[i] == true
|
|
// index_[1]: vector<int>, contains all index for cond[i] == false
|
|
for (int i = 0; i < 2; ++i) index_[i].clear();
|
|
|
|
const int* cond_data = cond->data<int>();
|
|
for (int i = 0; i < cond->dims()[0]; ++i) {
|
|
if (cond_data[i])
|
|
index_[0].push_back(i);
|
|
else
|
|
index_[1].push_back(i);
|
|
}
|
|
|
|
// put index_[0] and index_[1] into two tensors:
|
|
// index_tensor_[0] and index_tensor_[1]
|
|
DDim dim = paddle::framework::make_ddim({0});
|
|
for (int i = 0; i < 2; ++i) {
|
|
dim[0] = index_[i].size();
|
|
int* tmp_ptr =
|
|
index_tensors[i].mutable_data<int>(dim, platform::CPUPlace());
|
|
index_tensors[i].Resize(dim);
|
|
memcpy(tmp_ptr, index_[i].data(), dim[0] * sizeof(int));
|
|
}
|
|
|
|
// Step 2: collect data by calling gather
|
|
for (int i = 0; i < 2; ++i) {
|
|
// i= 0/i for True and False branches respectively
|
|
for (auto& input : Inputs("Xs")) {
|
|
// find Tensor
|
|
Variable* v = scope.FindVar(input);
|
|
PADDLE_ENFORCE_NOT_NULL(v);
|
|
LoDTensor* tensor_parent = v->GetMutable<LoDTensor>();
|
|
|
|
v = sub_scopes[i]->FindVar(input);
|
|
PADDLE_ENFORCE_NOT_NULL(v);
|
|
LoDTensor* tensor_child = v->GetMutable<LoDTensor>();
|
|
|
|
// Resize child
|
|
DDim dim = tensor_child->dims();
|
|
dim[0] = index_[i].size();
|
|
tensor_child->Resize(dim);
|
|
tensor_child->mutable_data<float>(dim, platform::CPUPlace());
|
|
|
|
Gather<float>(dev_ctx.GetPlace(), tensor_parent, &index_tensors[i],
|
|
tensor_child);
|
|
}
|
|
}
|
|
|
|
// Step 3: run
|
|
for (int i = 0; i < 2; ++i) {
|
|
sub_net_op_[i]->Run(*sub_scopes[i], dev_ctx);
|
|
}
|
|
|
|
// Step 4: merge output results
|
|
PADDLE_ENFORCE(!Outputs("Outs").empty(),
|
|
"Outputs(Outs) of CondOp can't be empty.");
|
|
for (int i = 0; i < 2; ++i) {
|
|
// i= 0/i for True and False branches respectively
|
|
for (auto& output : Outputs("Outs")) {
|
|
// find Tensor
|
|
Variable* v = scope.FindVar(output);
|
|
PADDLE_ENFORCE_NOT_NULL(v);
|
|
LoDTensor* tensor_parent = v->GetMutable<LoDTensor>();
|
|
|
|
v = sub_scopes[i]->FindVar(output);
|
|
PADDLE_ENFORCE_NOT_NULL(v);
|
|
LoDTensor* tensor_child = v->GetMutable<LoDTensor>();
|
|
|
|
ScatterUpdate<float>(dev_ctx.GetPlace(), tensor_child, &index_tensors[i],
|
|
tensor_parent);
|
|
}
|
|
}
|
|
}
|
|
|
|
class CondOpProtoAndCheckerMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
CondOpProtoAndCheckerMaker(framework::OpProto* proto,
|
|
framework::OpAttrChecker* op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("Cond", "The condition, which is a bool vector");
|
|
AddInput("Xs", "Inputs of Subnets").AsDuplicable();
|
|
AddOutput("Outs", "Outputs of Cond_Op after merge").AsDuplicable();
|
|
|
|
AddOutput("SubScopes", "sub scopes for true and false branches");
|
|
AddOutput("IndexTensors", "Index Tensors contains indices for true/false");
|
|
|
|
AddComment(R"DOC(
|
|
Sample dependent Cond Operator:
|
|
Given Cond[i] as a 1/0 vector to indicate true/false
|
|
The equation is:
|
|
Out[i] = subnet_t[i], if Cond[i] == true
|
|
Out[i] = subnet_t[i], if Cond[i] == false
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
REGISTER_OP_WITHOUT_GRADIENT(cond, paddle::operators::CondOp,
|
|
paddle::operators::CondOpProtoAndCheckerMaker);
|