You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
133 lines
5.4 KiB
133 lines
5.4 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/gemm_conv2d_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
int outputSize(int input_size, int filter_size, int padding, int stride) {
|
|
int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
|
|
return output_size;
|
|
}
|
|
|
|
class Conv2DOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Input"),
|
|
"Input(Input) of Conv2DOp should not be null.");
|
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Filter"),
|
|
"Input(Filter) of Conv2DOp should not be null.");
|
|
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Output"),
|
|
"Output(Output) of Conv2DOp should not be null.");
|
|
|
|
auto in = ctx.Input<Tensor>("Input");
|
|
auto filter = ctx.Input<Tensor>("Filter");
|
|
auto out = ctx.Output<framework::Tensor>("Output");
|
|
std::vector<int> strides = Attr<std::vector<int>>("strides");
|
|
std::vector<int> paddings = Attr<std::vector<int>>("paddings");
|
|
int groups = Attr<int>("groups");
|
|
int input_channels = in->dims()[1];
|
|
int output_channels = filter->dims()[0];
|
|
|
|
PADDLE_ENFORCE_EQ(in->dims().size(), 4, "Conv2DOp input should be 4-D.");
|
|
PADDLE_ENFORCE_EQ(filter->dims().size(), 4,
|
|
"Conv2DOp filter should be 4-D.");
|
|
PADDLE_ENFORCE_EQ(input_channels, filter->dims()[1] * groups,
|
|
"The number of input channels should be equal to filter "
|
|
"channels * groups.");
|
|
PADDLE_ENFORCE_EQ(
|
|
output_channels % groups, 0,
|
|
"The number of output channels should be divided by groups.");
|
|
|
|
auto output_height =
|
|
outputSize(in->dims()[2], filter->dims()[2], paddings[0], strides[0]);
|
|
auto output_width =
|
|
outputSize(in->dims()[3], filter->dims()[3], paddings[1], strides[1]);
|
|
out->Resize(
|
|
{in->dims()[0], filter->dims()[0], output_height, output_width});
|
|
}
|
|
};
|
|
|
|
class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
Conv2DOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput(
|
|
"Input",
|
|
"The input tensor of convolution operator. "
|
|
"The format of input tensor is NCHW. Where N is batch size, C is the "
|
|
"number of channels, H and W is the height and width of image.");
|
|
AddInput(
|
|
"Filter",
|
|
"The filter tensor of convolution operator."
|
|
"The format of the filter tensor is MCHW, where M is the number of "
|
|
"output image channels, C is the number of input image channels, "
|
|
"H and W is height and width of filter. "
|
|
"If the groups attribute is greater than 1, C equal the number of "
|
|
"input image channels divided by the groups.");
|
|
AddOutput("Output",
|
|
"The output tensor of convolution operator."
|
|
"The format of output tensor is also NCHW.");
|
|
AddAttr<std::vector<int>>("strides", "strides of convolution operator.")
|
|
.SetDefault({1, 1});
|
|
AddAttr<std::vector<int>>("paddings", "paddings of convolution operator.")
|
|
.SetDefault({0, 0});
|
|
AddAttr<int>(
|
|
"groups",
|
|
"group size of convolution operator. "
|
|
"Refer to grouped convolution in Alex Krizhevsky's paper: "
|
|
"when group=2, the first half of the filters are only connected to the "
|
|
"first half of the input channels, and the second half only connected "
|
|
"to the second half.")
|
|
.SetDefault(1);
|
|
AddComment(R"DOC(
|
|
The convolution operation calculates the output based on the input, filter
|
|
and strides, paddings, groups parameters. The size of each dimension of the
|
|
parameters is checked in the infer-shape.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class Conv2DOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
|
auto in = ctx.Input<Tensor>("Input");
|
|
auto filter = ctx.Input<Tensor>("Filter");
|
|
auto d_in = ctx.Output<framework::Tensor>(framework::GradVarName("Input"));
|
|
auto d_filter =
|
|
ctx.Output<framework::Tensor>(framework::GradVarName("Filter"));
|
|
if (d_in) d_in->Resize(in->dims());
|
|
if (d_filter) d_filter->Resize(filter->dims());
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP(conv2d, ops::Conv2DOp, ops::Conv2DOpMaker, conv2d_grad,
|
|
ops::Conv2DOpGrad);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
conv2d, ops::GemmConv2DKernel<paddle::platform::CPUPlace, float>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
conv2d_grad, ops::GemmConvGrad2DKernel<paddle::platform::CPUPlace, float>);
|