You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
145 lines
5.8 KiB
145 lines
5.8 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include "paddle/framework/eigen.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
template <typename T, int MajorType = Eigen::RowMajor,
|
|
typename IndexType = Eigen::DenseIndex>
|
|
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
|
|
template <typename T, int MajorType = Eigen::RowMajor,
|
|
typename IndexType = Eigen::DenseIndex>
|
|
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
|
|
|
|
template <typename Place, typename T>
|
|
class CosSimKernel : public framework::OpKernel {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
// get Tensor
|
|
auto* in_x = context.Input<Tensor>("X");
|
|
auto* in_y = context.Input<Tensor>("Y");
|
|
auto* out_z = context.Output<Tensor>("Out");
|
|
auto* out_x_norm = context.Output<Tensor>("XNorm");
|
|
auto* out_y_norm = context.Output<Tensor>("YNorm");
|
|
out_z->mutable_data<T>(context.GetPlace());
|
|
out_x_norm->mutable_data<T>(context.GetPlace());
|
|
out_y_norm->mutable_data<T>(context.GetPlace());
|
|
|
|
// convert Tensor to Eigen Tensor
|
|
int rows_x = in_x->dims()[0];
|
|
int rows_y = in_y->dims()[0];
|
|
auto x = EigenMatrix<T>::Reshape(*in_x, 1);
|
|
auto y = EigenMatrix<T>::Reshape(*in_y, 1);
|
|
auto z = EigenVector<T>::Flatten(*out_z);
|
|
auto x_norm = EigenVector<T>::Flatten(*out_x_norm);
|
|
auto y_norm = EigenVector<T>::Flatten(*out_y_norm);
|
|
|
|
// compute
|
|
auto place = context.GetEigenDevice<Place>();
|
|
auto row_along = Eigen::array<int, 1>({{1}});
|
|
x_norm.device(place) = x.square().sum(row_along).sqrt();
|
|
y_norm.device(place) = y.square().sum(row_along).sqrt();
|
|
if (rows_x == rows_y) {
|
|
auto xy = (x * y).sum(Eigen::array<int, 1>({{1}}));
|
|
z.device(place) = xy / x_norm / y_norm;
|
|
} else {
|
|
Eigen::DSizes<int, 2> bcast(rows_x, 1);
|
|
auto xy = (x * y.broadcast(bcast)).sum(row_along);
|
|
z.device(place) = xy / x_norm / y_norm.broadcast(bcast);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename Place, typename T>
|
|
class CosSimGradKernel : public framework::OpKernel {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
// get Tensor
|
|
auto* in_x = context.Input<Tensor>("X");
|
|
auto* in_y = context.Input<Tensor>("Y");
|
|
auto* in_z = context.Input<Tensor>("Out");
|
|
auto* in_x_norm = context.Input<Tensor>("XNorm");
|
|
auto* in_y_norm = context.Input<Tensor>("YNorm");
|
|
auto* out_grad_x = context.Output<Tensor>(framework::GradVarName("X"));
|
|
auto* out_grad_y = context.Output<Tensor>(framework::GradVarName("Y"));
|
|
auto* in_grad_z = context.Input<Tensor>(framework::GradVarName("Out"));
|
|
|
|
// convert Tensor to Eigen Tensor
|
|
auto x = EigenMatrix<T>::Reshape(*in_x, 1);
|
|
auto y = EigenMatrix<T>::Reshape(*in_y, 1);
|
|
auto z = EigenMatrix<T>::Reshape(*in_z, 1);
|
|
auto x_norm = EigenMatrix<T>::Reshape(*in_x_norm, 1);
|
|
auto y_norm = EigenMatrix<T>::Reshape(*in_y_norm, 1);
|
|
auto dz = EigenMatrix<T>::Reshape(*in_grad_z, 1);
|
|
|
|
// compute gradident
|
|
int rows_x = in_x->dims()[0];
|
|
int rows_y = in_y->dims()[0];
|
|
int cols = framework::product(in_x->dims()) / rows_x;
|
|
Eigen::DSizes<int, 2> bcast_cols(1, cols);
|
|
auto z_bcast = z.broadcast(bcast_cols);
|
|
auto dz_bcast = dz.broadcast(bcast_cols);
|
|
auto x_snorm_bcast = x_norm.square().eval().broadcast(bcast_cols);
|
|
auto place = context.GetEigenDevice<Place>();
|
|
if (rows_x == rows_y) {
|
|
auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast_cols);
|
|
auto norm_prod_bcast = (x_norm * y_norm).eval().broadcast(bcast_cols);
|
|
// compute dx
|
|
if (out_grad_x) {
|
|
out_grad_x->mutable_data<T>(context.GetPlace());
|
|
auto dx = EigenMatrix<T>::Reshape(*out_grad_x, 1);
|
|
auto grad = y / norm_prod_bcast - z_bcast * x / x_snorm_bcast;
|
|
dx.device(place) = dz_bcast * grad;
|
|
}
|
|
// compute dy
|
|
if (out_grad_y) {
|
|
out_grad_y->mutable_data<T>(context.GetPlace());
|
|
auto dy = EigenMatrix<T>::Reshape(*out_grad_y, 1);
|
|
auto grad = x / norm_prod_bcast - z_bcast * y / y_snorm_bcast;
|
|
dy.device(place) = dz_bcast * grad;
|
|
}
|
|
} else {
|
|
Eigen::DSizes<int, 2> bcast_rows(rows_x, 1);
|
|
Eigen::DSizes<int, 2> bcast_rows_cols(rows_x, cols);
|
|
auto y_bcast = y.broadcast(bcast_rows);
|
|
auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast_rows_cols);
|
|
auto norm_prod_bcast = (x_norm * y_norm.eval().broadcast(bcast_rows))
|
|
.eval()
|
|
.broadcast(bcast_cols);
|
|
// compute dx
|
|
if (out_grad_x) {
|
|
out_grad_x->mutable_data<T>(context.GetPlace());
|
|
auto dx = EigenMatrix<T>::Reshape(*out_grad_x, 1);
|
|
auto grad = y_bcast / norm_prod_bcast - z_bcast * x / x_snorm_bcast;
|
|
dx.device(place) = dz_bcast * grad;
|
|
}
|
|
// compute dy
|
|
if (out_grad_y) {
|
|
out_grad_y->mutable_data<T>(context.GetPlace());
|
|
auto dy = EigenMatrix<T>::Reshape(*out_grad_y, 1);
|
|
auto grad = x / norm_prod_bcast - z_bcast * y_bcast / y_snorm_bcast;
|
|
dy.device(place) = (dz_bcast * grad).sum(Eigen::array<int, 1>({{0}}));
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|