You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
141 lines
5.5 KiB
141 lines
5.5 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/mul_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::Tensor;
|
|
|
|
class MulOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
|
|
"Input(X) of MulOp should not be null.");
|
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"),
|
|
"Input(Y) of MulOp should not be null.");
|
|
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
|
|
"Output(Out) of MulOp should not be null.");
|
|
|
|
auto x_dims = ctx.Input<Tensor>("X")->dims();
|
|
auto y_dims = ctx.Input<Tensor>("Y")->dims();
|
|
int x_num_col_dims = Attr<int>("x_num_col_dims");
|
|
int y_num_col_dims = Attr<int>("y_num_col_dims");
|
|
|
|
PADDLE_ENFORCE(x_dims.size() > x_num_col_dims,
|
|
"The rank of input tensor X(%s) should be larger than "
|
|
"`mul_op`'s `x_num_col_dims`.",
|
|
ctx.op().Input("X"));
|
|
PADDLE_ENFORCE(y_dims.size() > y_num_col_dims,
|
|
"The rank of input tensor Y(%s) should be larger than "
|
|
"`mul_op`'s `y_num_col_dims`.",
|
|
ctx.op().Input("Y"));
|
|
|
|
auto x_mat_dims = framework::flatten_to_2d(x_dims, x_num_col_dims);
|
|
auto y_mat_dims = framework::flatten_to_2d(y_dims, y_num_col_dims);
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
x_mat_dims[1], y_mat_dims[0],
|
|
"First matrix's width must be equal with second matrix's height.");
|
|
ctx.Output<framework::Tensor>("Out")->Resize(
|
|
{x_mat_dims[0], y_mat_dims[1]});
|
|
ctx.ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
};
|
|
|
|
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
MulOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "The first input of mul op");
|
|
AddInput("Y", "The second input of mul op");
|
|
AddOutput("Out", "The output of mul op");
|
|
AddAttr<int>(
|
|
"x_num_col_dims",
|
|
R"DOC(mul_op can take tensors with more than two dimensions as input `X`,
|
|
in that case, tensors will be reshaped to a matrix. The matrix's first
|
|
dimension(column length) will be the product of tensor's last
|
|
`num_col_dims` dimensions, and the matrix's second dimension(row length)
|
|
will be the product of tensor's first `rank - num_col_dims` dimensions.
|
|
)DOC")
|
|
.SetDefault(1)
|
|
.EqualGreaterThan(1);
|
|
AddAttr<int>(
|
|
"y_num_col_dims",
|
|
R"DOC(mul_op can take tensors with more than two dimensions as input `Y`,
|
|
in that case, tensors will be reshaped to a matrix. Just like input `X`.
|
|
)DOC")
|
|
.SetDefault(1)
|
|
.EqualGreaterThan(1);
|
|
AddComment(R"DOC(
|
|
Mul operator is used to perform matrix multiplication for input X and Y.
|
|
|
|
The equation is:
|
|
|
|
Out = X * Y
|
|
|
|
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
|
|
or not. But the output only shares the LoD with input `X`.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class MulOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
|
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) should not be null");
|
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
|
|
"Input(Out@GRAD) should not be null");
|
|
auto x_dims = ctx.Input<Tensor>("X")->dims();
|
|
auto y_dims = ctx.Input<Tensor>("Y")->dims();
|
|
auto out_dims = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
|
|
auto *x_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
|
|
auto *y_grad = ctx.Output<framework::Tensor>(framework::GradVarName("Y"));
|
|
|
|
auto x_mat_dims =
|
|
framework::flatten_to_2d(x_dims, Attr<int>("x_num_col_dims"));
|
|
auto y_mat_dims =
|
|
framework::flatten_to_2d(y_dims, Attr<int>("y_num_col_dims"));
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
x_mat_dims[0], out_dims[0],
|
|
"The first dimension of Out@GRAD must equal to the first dimension of "
|
|
"the first operand.");
|
|
PADDLE_ENFORCE_EQ(
|
|
y_mat_dims[1], out_dims[1],
|
|
"The second dimension of Out@GRAD must equal to the second "
|
|
"dimension of the second operand.");
|
|
|
|
if (x_grad) x_grad->Resize(x_dims);
|
|
if (y_grad) y_grad->Resize(y_dims);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP(mul, ops::MulOp, ops::MulOpMaker, mul_grad, ops::MulOpGrad);
|
|
REGISTER_OP_CPU_KERNEL(mul, ops::MulKernel<paddle::platform::CPUPlace, float>);
|
|
REGISTER_OP_CPU_KERNEL(mul_grad,
|
|
ops::MulGradKernel<paddle::platform::CPUPlace, float>);
|