You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/matmul_v2_op_xpu.cc

253 lines
9.1 KiB

// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/matmul_v2_op.h"
#include <string>
#include <vector>
namespace paddle {
namespace operators {
template <typename T, typename FCT>
static void MatMulXPUFunction(const Tensor* x, const Tensor* y, Tensor* out,
bool trans_x, bool trans_y,
const paddle::framework::ExecutionContext& ctx) {
const auto& x_dims = x->dims();
const auto& y_dims = y->dims();
auto& dev_ctx =
ctx.template device_context<paddle::platform::XPUDeviceContext>();
auto mat_dim_a =
math::CreateMatrixDescriptor(RowMatrixFromVector(x_dims), 0, trans_x);
auto mat_dim_b =
math::CreateMatrixDescriptor(ColumnMatrixFromVector(y_dims), 0, trans_y);
if (x_dims.size() == 3 && y_dims.size() <= 2) {
// if transpose_X is true, the transpose cost much time
if (!trans_x) {
mat_dim_a.height_ *= mat_dim_a.batch_size_;
mat_dim_a.batch_size_ = 0;
} else {
mat_dim_b.batch_size_ = mat_dim_a.batch_size_;
mat_dim_b.height_ = mat_dim_b.height_ / mat_dim_b.batch_size_;
}
}
if (mat_dim_a.width_ == mat_dim_b.height_) {
if (mat_dim_a.batch_size_ == 0 && mat_dim_b.batch_size_ == 1) {
mat_dim_a.batch_size_ = mat_dim_b.batch_size_ = 0;
}
if (mat_dim_a.batch_size_ == 1 && mat_dim_b.batch_size_ == 0) {
mat_dim_a.batch_size_ = mat_dim_b.batch_size_ = 0;
}
}
PADDLE_ENFORCE_EQ(mat_dim_a.width_, mat_dim_b.height_,
platform::errors::InvalidArgument(
"Shape mistake in matmul_v2_op xdims = %s ydims = %s",
x_dims.to_str(), y_dims.to_str()));
PADDLE_ENFORCE_EQ(mat_dim_a.batch_size_, mat_dim_b.batch_size_,
platform::errors::InvalidArgument(
"Shape mistake in matmul_v2_op xdims = %s ydims = %s",
x_dims.to_str(), y_dims.to_str()));
float* data_c = out->data<T>();
int m = mat_dim_a.height_;
int n = mat_dim_b.width_;
int k = mat_dim_a.width_;
int batch_size = mat_dim_a.batch_size_;
if (batch_size == 0) {
int r = xpu::fc<float, float, float, FCT>(
dev_ctx.x_context(), x->data<T>(), y->data<T>(), data_c, m, n, k,
mat_dim_a.trans_, mat_dim_b.trans_, nullptr, nullptr, nullptr);
PADDLE_ENFORCE_EQ(r, XPU_SUCCESS,
platform::errors::External(
"XPU fc_fusion kernel return wrong value[%d %s]", r,
XPUAPIErrorMsg[r]));
} else {
// batch matmul
int x_stride = mat_dim_a.stride_;
int y_stride = mat_dim_b.stride_;
int out_stride = m * n;
for (int i = 0; i < batch_size; ++i) {
const float* x_data = x->data<T>() + x_stride * i;
const float* y_data = y->data<T>() + y_stride * i;
float* out_data = data_c + out_stride * i;
int r = xpu::fc<float, float, float, FCT>(
dev_ctx.x_context(), x_data, y_data, out_data, m, n, k,
mat_dim_a.trans_, mat_dim_b.trans_, nullptr, nullptr, nullptr);
PADDLE_ENFORCE_EQ(r, XPU_SUCCESS,
platform::errors::External(
"XPU fc_fusion kernel return wrong value[%d %s]", r,
XPUAPIErrorMsg[r]));
}
}
}
template <typename T>
class MatMulV2XPUKernel : public framework::OpKernel<T> {
public:
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* out = ctx.Output<Tensor>("Out");
bool trans_x = ctx.Attr<bool>("trans_x");
bool trans_y = ctx.Attr<bool>("trans_y");
out->mutable_data<T>(ctx.GetPlace());
if (std::getenv("XPU_PADDLE_MAT_MUL_V2_FCINT32") != nullptr) {
MatMulXPUFunction<T, int32_t>(x, y, out, trans_x, trans_y, ctx);
} else {
MatMulXPUFunction<T, int16_t>(x, y, out, trans_x, trans_y, ctx);
}
}
};
template <typename DeviceContext, typename T>
static framework::Tensor XPUFoldHeadAndLastDims(
const DeviceContext& context, const framework::Tensor& input) {
auto in_dims = input.dims();
if (in_dims.size() != 3) {
return input;
}
framework::Tensor output;
output.Resize({in_dims[1], in_dims[0], in_dims[2]});
output.mutable_data<T>(context.GetPlace());
std::vector<int> in_shape_host = {static_cast<int>(in_dims[0]),
static_cast<int>(in_dims[1]),
static_cast<int>(in_dims[2])};
std::vector<int> axis_host = {1, 0, 2};
int r = xpu::transpose(context.x_context(), input.data<T>(), output.data<T>(),
in_shape_host.data(), axis_host.data(), /*ndims=*/3);
PADDLE_ENFORCE_EQ(r, XPU_SUCCESS,
platform::errors::External(
"XPU transpose kernel return wrong value[%d %s]", r,
XPUAPIErrorMsg[r]));
output.Resize({in_dims[1], in_dims[0] * in_dims[2]});
return output;
}
template <typename T>
class MatMulV2XPUGradKernel : public framework::OpKernel<T> {
public:
void MatMul(const framework::ExecutionContext& ctx,
const framework::Tensor& a, bool trans_a,
const framework::Tensor& b, bool trans_b,
framework::Tensor* out) const {
out->mutable_data<T>(ctx.GetPlace());
if (std::getenv("XPU_PADDLE_MAT_MUL_GRAD_V2_FCINT32") != nullptr) {
MatMulXPUFunction<T, int32_t>(&a, &b, out, trans_a, trans_b, ctx);
} else {
MatMulXPUFunction<T, int16_t>(&a, &b, out, trans_a, trans_b, ctx);
}
}
void CalcInputGrad(const framework::ExecutionContext& context,
const framework::Tensor& a, bool trans_a,
bool is_fold_init_dims_a, const framework::Tensor& b,
bool trans_b, bool is_fold_init_dims_b,
framework::Tensor* out) const {
if (out == nullptr) return;
bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
out->dims().size() == 2;
if (!need_combine) {
MatMul(context, a, trans_a, b, trans_b, out);
} else {
auto& dev_ctx =
context.template device_context<paddle::platform::XPUDeviceContext>();
MatMul(
context,
is_fold_init_dims_a
? FoldInitDims(a)
: XPUFoldHeadAndLastDims<paddle::platform::XPUDeviceContext, T>(
dev_ctx, a),
trans_a,
is_fold_init_dims_b
? FoldInitDims(b)
: XPUFoldHeadAndLastDims<paddle::platform::XPUDeviceContext, T>(
dev_ctx, b),
trans_b, out);
}
}
void Compute(const framework::ExecutionContext& context) const override {
bool transpose_x = context.Attr<bool>("trans_x");
bool transpose_y = context.Attr<bool>("trans_y");
auto x = *context.Input<framework::Tensor>("X");
auto y = *context.Input<framework::Tensor>("Y");
auto dout =
*context.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* dx = context.Output<framework::Tensor>(framework::GradVarName("X"));
auto* dy = context.Output<framework::Tensor>(framework::GradVarName("Y"));
ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);
framework::DDim dx_dims;
if (dx) {
dx_dims = dx->dims();
if (dx_dims != x.dims()) {
dx->Resize(x.dims());
}
}
framework::DDim dy_dims;
if (dy) {
dy_dims = dy->dims();
if (dy_dims != y.dims()) {
dy->Resize(y.dims());
}
}
if (transpose_x && transpose_y) {
CalcInputGrad(context, y, true, true, dout, true, false, dx);
CalcInputGrad(context, dout, true, true, x, true, false, dy);
} else if (transpose_x) {
CalcInputGrad(context, y, false, false, dout, true, false, dx);
CalcInputGrad(context, x, false, false, dout, false, true, dy);
} else if (transpose_y) {
CalcInputGrad(context, dout, false, false, y, false, true, dx);
CalcInputGrad(context, dout, true, true, x, false, true, dy);
} else {
CalcInputGrad(context, dout, false, false, y, true, false, dx);
CalcInputGrad(context, x, true, true, dout, false, true, dy);
}
if (dx) {
if (dx_dims != x.dims()) {
dx->Resize(dx_dims);
}
}
if (dy) {
if (dy_dims != y.dims()) {
dy->Resize(dy_dims);
}
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(matmul_v2, ops::MatMulV2XPUKernel<float>);
REGISTER_OP_XPU_KERNEL(matmul_v2_grad, ops::MatMulV2XPUGradKernel<float>);
#endif