You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
253 lines
9.1 KiB
253 lines
9.1 KiB
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#ifdef PADDLE_WITH_XPU
|
|
|
|
#include "paddle/fluid/operators/matmul_v2_op.h"
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename T, typename FCT>
|
|
static void MatMulXPUFunction(const Tensor* x, const Tensor* y, Tensor* out,
|
|
bool trans_x, bool trans_y,
|
|
const paddle::framework::ExecutionContext& ctx) {
|
|
const auto& x_dims = x->dims();
|
|
const auto& y_dims = y->dims();
|
|
auto& dev_ctx =
|
|
ctx.template device_context<paddle::platform::XPUDeviceContext>();
|
|
|
|
auto mat_dim_a =
|
|
math::CreateMatrixDescriptor(RowMatrixFromVector(x_dims), 0, trans_x);
|
|
auto mat_dim_b =
|
|
math::CreateMatrixDescriptor(ColumnMatrixFromVector(y_dims), 0, trans_y);
|
|
|
|
if (x_dims.size() == 3 && y_dims.size() <= 2) {
|
|
// if transpose_X is true, the transpose cost much time
|
|
if (!trans_x) {
|
|
mat_dim_a.height_ *= mat_dim_a.batch_size_;
|
|
mat_dim_a.batch_size_ = 0;
|
|
} else {
|
|
mat_dim_b.batch_size_ = mat_dim_a.batch_size_;
|
|
mat_dim_b.height_ = mat_dim_b.height_ / mat_dim_b.batch_size_;
|
|
}
|
|
}
|
|
|
|
if (mat_dim_a.width_ == mat_dim_b.height_) {
|
|
if (mat_dim_a.batch_size_ == 0 && mat_dim_b.batch_size_ == 1) {
|
|
mat_dim_a.batch_size_ = mat_dim_b.batch_size_ = 0;
|
|
}
|
|
if (mat_dim_a.batch_size_ == 1 && mat_dim_b.batch_size_ == 0) {
|
|
mat_dim_a.batch_size_ = mat_dim_b.batch_size_ = 0;
|
|
}
|
|
}
|
|
|
|
PADDLE_ENFORCE_EQ(mat_dim_a.width_, mat_dim_b.height_,
|
|
platform::errors::InvalidArgument(
|
|
"Shape mistake in matmul_v2_op xdims = %s ydims = %s",
|
|
x_dims.to_str(), y_dims.to_str()));
|
|
PADDLE_ENFORCE_EQ(mat_dim_a.batch_size_, mat_dim_b.batch_size_,
|
|
platform::errors::InvalidArgument(
|
|
"Shape mistake in matmul_v2_op xdims = %s ydims = %s",
|
|
x_dims.to_str(), y_dims.to_str()));
|
|
|
|
float* data_c = out->data<T>();
|
|
int m = mat_dim_a.height_;
|
|
int n = mat_dim_b.width_;
|
|
int k = mat_dim_a.width_;
|
|
int batch_size = mat_dim_a.batch_size_;
|
|
|
|
if (batch_size == 0) {
|
|
int r = xpu::fc<float, float, float, FCT>(
|
|
dev_ctx.x_context(), x->data<T>(), y->data<T>(), data_c, m, n, k,
|
|
mat_dim_a.trans_, mat_dim_b.trans_, nullptr, nullptr, nullptr);
|
|
PADDLE_ENFORCE_EQ(r, XPU_SUCCESS,
|
|
platform::errors::External(
|
|
"XPU fc_fusion kernel return wrong value[%d %s]", r,
|
|
XPUAPIErrorMsg[r]));
|
|
} else {
|
|
// batch matmul
|
|
int x_stride = mat_dim_a.stride_;
|
|
int y_stride = mat_dim_b.stride_;
|
|
int out_stride = m * n;
|
|
for (int i = 0; i < batch_size; ++i) {
|
|
const float* x_data = x->data<T>() + x_stride * i;
|
|
const float* y_data = y->data<T>() + y_stride * i;
|
|
float* out_data = data_c + out_stride * i;
|
|
int r = xpu::fc<float, float, float, FCT>(
|
|
dev_ctx.x_context(), x_data, y_data, out_data, m, n, k,
|
|
mat_dim_a.trans_, mat_dim_b.trans_, nullptr, nullptr, nullptr);
|
|
PADDLE_ENFORCE_EQ(r, XPU_SUCCESS,
|
|
platform::errors::External(
|
|
"XPU fc_fusion kernel return wrong value[%d %s]", r,
|
|
XPUAPIErrorMsg[r]));
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
class MatMulV2XPUKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
|
|
auto* x = ctx.Input<Tensor>("X");
|
|
auto* y = ctx.Input<Tensor>("Y");
|
|
auto* out = ctx.Output<Tensor>("Out");
|
|
bool trans_x = ctx.Attr<bool>("trans_x");
|
|
bool trans_y = ctx.Attr<bool>("trans_y");
|
|
out->mutable_data<T>(ctx.GetPlace());
|
|
if (std::getenv("XPU_PADDLE_MAT_MUL_V2_FCINT32") != nullptr) {
|
|
MatMulXPUFunction<T, int32_t>(x, y, out, trans_x, trans_y, ctx);
|
|
} else {
|
|
MatMulXPUFunction<T, int16_t>(x, y, out, trans_x, trans_y, ctx);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
static framework::Tensor XPUFoldHeadAndLastDims(
|
|
const DeviceContext& context, const framework::Tensor& input) {
|
|
auto in_dims = input.dims();
|
|
if (in_dims.size() != 3) {
|
|
return input;
|
|
}
|
|
|
|
framework::Tensor output;
|
|
output.Resize({in_dims[1], in_dims[0], in_dims[2]});
|
|
output.mutable_data<T>(context.GetPlace());
|
|
std::vector<int> in_shape_host = {static_cast<int>(in_dims[0]),
|
|
static_cast<int>(in_dims[1]),
|
|
static_cast<int>(in_dims[2])};
|
|
std::vector<int> axis_host = {1, 0, 2};
|
|
|
|
int r = xpu::transpose(context.x_context(), input.data<T>(), output.data<T>(),
|
|
in_shape_host.data(), axis_host.data(), /*ndims=*/3);
|
|
PADDLE_ENFORCE_EQ(r, XPU_SUCCESS,
|
|
platform::errors::External(
|
|
"XPU transpose kernel return wrong value[%d %s]", r,
|
|
XPUAPIErrorMsg[r]));
|
|
output.Resize({in_dims[1], in_dims[0] * in_dims[2]});
|
|
|
|
return output;
|
|
}
|
|
|
|
template <typename T>
|
|
class MatMulV2XPUGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void MatMul(const framework::ExecutionContext& ctx,
|
|
const framework::Tensor& a, bool trans_a,
|
|
const framework::Tensor& b, bool trans_b,
|
|
framework::Tensor* out) const {
|
|
out->mutable_data<T>(ctx.GetPlace());
|
|
if (std::getenv("XPU_PADDLE_MAT_MUL_GRAD_V2_FCINT32") != nullptr) {
|
|
MatMulXPUFunction<T, int32_t>(&a, &b, out, trans_a, trans_b, ctx);
|
|
} else {
|
|
MatMulXPUFunction<T, int16_t>(&a, &b, out, trans_a, trans_b, ctx);
|
|
}
|
|
}
|
|
|
|
void CalcInputGrad(const framework::ExecutionContext& context,
|
|
const framework::Tensor& a, bool trans_a,
|
|
bool is_fold_init_dims_a, const framework::Tensor& b,
|
|
bool trans_b, bool is_fold_init_dims_b,
|
|
framework::Tensor* out) const {
|
|
if (out == nullptr) return;
|
|
bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
|
|
out->dims().size() == 2;
|
|
if (!need_combine) {
|
|
MatMul(context, a, trans_a, b, trans_b, out);
|
|
} else {
|
|
auto& dev_ctx =
|
|
context.template device_context<paddle::platform::XPUDeviceContext>();
|
|
MatMul(
|
|
context,
|
|
is_fold_init_dims_a
|
|
? FoldInitDims(a)
|
|
: XPUFoldHeadAndLastDims<paddle::platform::XPUDeviceContext, T>(
|
|
dev_ctx, a),
|
|
trans_a,
|
|
is_fold_init_dims_b
|
|
? FoldInitDims(b)
|
|
: XPUFoldHeadAndLastDims<paddle::platform::XPUDeviceContext, T>(
|
|
dev_ctx, b),
|
|
trans_b, out);
|
|
}
|
|
}
|
|
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
bool transpose_x = context.Attr<bool>("trans_x");
|
|
bool transpose_y = context.Attr<bool>("trans_y");
|
|
|
|
auto x = *context.Input<framework::Tensor>("X");
|
|
auto y = *context.Input<framework::Tensor>("Y");
|
|
auto dout =
|
|
*context.Input<framework::Tensor>(framework::GradVarName("Out"));
|
|
auto* dx = context.Output<framework::Tensor>(framework::GradVarName("X"));
|
|
auto* dy = context.Output<framework::Tensor>(framework::GradVarName("Y"));
|
|
ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);
|
|
framework::DDim dx_dims;
|
|
if (dx) {
|
|
dx_dims = dx->dims();
|
|
if (dx_dims != x.dims()) {
|
|
dx->Resize(x.dims());
|
|
}
|
|
}
|
|
|
|
framework::DDim dy_dims;
|
|
if (dy) {
|
|
dy_dims = dy->dims();
|
|
if (dy_dims != y.dims()) {
|
|
dy->Resize(y.dims());
|
|
}
|
|
}
|
|
|
|
if (transpose_x && transpose_y) {
|
|
CalcInputGrad(context, y, true, true, dout, true, false, dx);
|
|
CalcInputGrad(context, dout, true, true, x, true, false, dy);
|
|
} else if (transpose_x) {
|
|
CalcInputGrad(context, y, false, false, dout, true, false, dx);
|
|
CalcInputGrad(context, x, false, false, dout, false, true, dy);
|
|
} else if (transpose_y) {
|
|
CalcInputGrad(context, dout, false, false, y, false, true, dx);
|
|
CalcInputGrad(context, dout, true, true, x, false, true, dy);
|
|
} else {
|
|
CalcInputGrad(context, dout, false, false, y, true, false, dx);
|
|
CalcInputGrad(context, x, true, true, dout, false, true, dy);
|
|
}
|
|
|
|
if (dx) {
|
|
if (dx_dims != x.dims()) {
|
|
dx->Resize(dx_dims);
|
|
}
|
|
}
|
|
|
|
if (dy) {
|
|
if (dy_dims != y.dims()) {
|
|
dy->Resize(dy_dims);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP_XPU_KERNEL(matmul_v2, ops::MatMulV2XPUKernel<float>);
|
|
REGISTER_OP_XPU_KERNEL(matmul_v2_grad, ops::MatMulV2XPUGradKernel<float>);
|
|
|
|
#endif
|