You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/optimizer/rmsprop.py

208 lines
8.2 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .optimizer import Optimizer
from ..fluid import core
from ..fluid import framework
from ..fluid.framework import Variable
__all__ = ["RMSProp"]
class RMSProp(Optimizer):
"""
Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
rate method. The original slides proposed RMSProp: Slide 29 of
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .
The original equation is as follows:
.. math::
r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)
The first equation calculates moving average of the squared gradient for
each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
In some cases, adding a momentum term :math: `\\beta` is beneficial.
In our implementation, Nesterov momentum is used:
.. math::
r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
\\epsilon}} \\nabla Q_{i}(w)
w & = w - v(w, t)
if centered is True:
.. math::
r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)
v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
\\epsilon}} \\nabla Q_{i}(w)
w & = w - v(w, t)
where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
smoothing term to avoid division by zero, usually set somewhere in range
from 1e-4 to 1e-8.
Parameters:
learning_rate (float|LRScheduler): The learning rate used to update ``Parameter``.
It can be a float value or a LRScheduler.
rho(float): rho is :math: `\\rho` in equation, default is 0.95.
epsilon(float): :math: `\\epsilon` in equation is smoothing term to
avoid division by zero, default is 1e-6.
momentum(float): :math:`\\beta` in equation is the momentum term,
default is 0.0.
centered(bool): If True, gradients are normalized by the estimated variance of
the gradient; if False, by the uncentered second moment. Setting this to
True may help with training, but is slightly more expensive in terms of
computation and memory. Defaults to False.
parameters (list, optional): List of ``Tensor`` to update to minimize ``loss``. \
This parameter is required in dygraph mode. \
The default value is None in static mode, at this time all parameters will be updated.
weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
It canbe a float value as coeff of L2 regularization or \
:ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
the regularization setting here in optimizer will be ignored for this parameter. \
Otherwise, the regularization setting here in optimizer will take effect. \
Default None, meaning there is no regularization.
grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
some derived class of ``GradientClipBase`` . There are three cliping strategies
( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
:ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
name (str, optional): This parameter is used by developers to print debugging information. \
For details, please refer to :ref:`api_guide_Name`. Default is None.
Raises:
ValueError: If learning_rate, rho, epsilon, momentum are None.
Examples:
.. code-block:: python
import paddle
inp = paddle.rand([10,10], dtype="float32")
linear = paddle.nn.Linear(10, 10)
out = linear(inp)
loss = paddle.mean(out)
rmsprop = paddle.optimizer.RMSProp(learning_rate=0.1,
parameters=linear.parameters(),
weight_decay=0.01)
out.backward()
rmsprop.step()
rmsprop.clear_grad()
"""
_momentum_acc_str = "momentum"
_mean_square_acc_str = "mean_square"
_mean_grad_acc_str = "mean_grad"
def __init__(self,
learning_rate,
rho=0.95,
epsilon=1.0e-6,
momentum=0.0,
centered=False,
parameters=None,
weight_decay=None,
grad_clip=None,
name=None):
if learning_rate is None:
raise ValueError("learning_rate is not set.")
if rho is None:
raise ValueError("rho is not set.")
if epsilon is None:
raise ValueError("epsilon is not set.")
if momentum is None:
raise ValueError("momentum is not set.")
if not 0.0 <= epsilon:
raise ValueError("Invalid value of epsilon, expect epsilon >= 0.")
if not 0.0 <= momentum:
raise ValueError("Invalid value of momentum, expect momentum >= 0.")
if not 0.0 <= rho:
raise ValueError("Invalid value of rho, expect rho >= 0.")
super(RMSProp, self).__init__(
learning_rate=learning_rate,
parameters=parameters,
weight_decay=weight_decay,
grad_clip=grad_clip,
name=name)
self.type = "rmsprop"
self._rho = rho
self._epsilon = epsilon
self._momentum = momentum
self._centered = centered
def _create_accumulators(self, block, parameters):
if not isinstance(block, framework.Block):
raise TypeError("block is not instance of framework.Block.")
for p in parameters:
self._add_accumulator(self._momentum_acc_str, p)
self._add_accumulator(self._mean_square_acc_str, p)
self._add_accumulator(self._mean_grad_acc_str, p)
def _append_optimize_op(self, block, param_and_grad):
if not isinstance(block, framework.Block):
raise TypeError("block is not instance of framework.Block.")
momentum_acc = self._get_accumulator(self._momentum_acc_str,
param_and_grad[0])
mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
param_and_grad[0])
mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
param_and_grad[0])
rmsprop_op = block.append_op(
type=self.type,
inputs={
"Param": param_and_grad[0],
"Grad": param_and_grad[1],
"Moment": momentum_acc,
"MeanSquare": mean_square_acc,
"MeanGrad": mean_grad_acc,
"LearningRate": self._create_param_lr(param_and_grad),
},
outputs={
"ParamOut": param_and_grad[0],
"MomentOut": momentum_acc,
"MeanSquareOut": mean_square_acc,
"MeanGradOut": mean_grad_acc
},
attrs={
"epsilon": self._epsilon,
"decay": self._rho,
"momentum": self._momentum,
"centered": self._centered
},
stop_gradient=True)
return rmsprop_op