You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
164 lines
6.2 KiB
164 lines
6.2 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenseshashernless required by applicable law or agreed
|
|
to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <functional>
|
|
#include <unordered_map>
|
|
|
|
#include "paddle/fluid/framework/lod_tensor.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::Tensor;
|
|
using platform::Communicator;
|
|
using framework::LoDTensor;
|
|
|
|
template <typename Type>
|
|
class NCCLTypeWrapper;
|
|
|
|
template <>
|
|
class NCCLTypeWrapper<float> {
|
|
public:
|
|
static const ncclDataType_t type = ncclFloat;
|
|
};
|
|
|
|
template <>
|
|
class NCCLTypeWrapper<double> {
|
|
public:
|
|
static const ncclDataType_t type = ncclDouble;
|
|
};
|
|
|
|
static ncclRedOp_t str_to_nccl_red_type(std::string reduction) {
|
|
static const std::unordered_map<std::string, ncclRedOp_t> str_to_type = {
|
|
{"ncclSum", ncclSum},
|
|
{"ncclMin", ncclMin},
|
|
{"ncclMax", ncclMax},
|
|
{"ncclProd", ncclProd},
|
|
};
|
|
auto it = str_to_type.find(reduction);
|
|
PADDLE_ENFORCE_EQ(it != str_to_type.end(), true,
|
|
platform::errors::InvalidArgument(
|
|
"Invalid nccl reduction. Must be ncclMin | ncclMax | "
|
|
"ncclProd | ncclSum"));
|
|
return it->second;
|
|
}
|
|
|
|
template <typename T>
|
|
class NCCLAllReduceKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
|
|
platform::errors::PreconditionNotMet(
|
|
"This kernel only runs on GPU device."));
|
|
auto* x = ctx.Input<LoDTensor>("X");
|
|
auto* out = ctx.Output<LoDTensor>("Out");
|
|
auto* comm = ctx.Input<Communicator>("Communicator");
|
|
std::string reduction = ctx.Attr<std::string>("reduction");
|
|
|
|
auto reduction_op_ = str_to_nccl_red_type(reduction);
|
|
|
|
// device id
|
|
int gpu_id =
|
|
BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace()).GetDeviceId();
|
|
int idx = comm->GetCommId(gpu_id);
|
|
VLOG(3) << "gpu : "
|
|
<< " invoke allreduce. send " << x->numel() << " recv "
|
|
<< out->numel();
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclAllReduce(
|
|
x->data<T>(), out->mutable_data<T>(ctx.GetPlace()), out->numel(),
|
|
NCCLTypeWrapper<T>::type, reduction_op_, comm->comms().at(idx),
|
|
ctx.cuda_device_context().stream()));
|
|
VLOG(3) << "gpu : "
|
|
<< " finished allreduce. send " << x->numel() << " recv "
|
|
<< out->numel();
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class NCCLReduceKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
|
|
platform::errors::InvalidArgument(
|
|
"This kernel only runs on GPU device."));
|
|
auto x = ctx.Input<LoDTensor>("X"); // x0, x1, x2
|
|
auto out = ctx.Output<LoDTensor>("Out");
|
|
auto* comm = ctx.Input<Communicator>("Communicator");
|
|
int root = ctx.Attr<int>("root");
|
|
std::string reduction = ctx.Attr<std::string>("reduction");
|
|
|
|
auto reduction_op_ = str_to_nccl_red_type(reduction);
|
|
|
|
// device id
|
|
int gpu_id =
|
|
BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace()).GetDeviceId();
|
|
int idx = comm->GetCommId(gpu_id);
|
|
T* recvbuffer = nullptr;
|
|
if (root == gpu_id) {
|
|
recvbuffer = out->mutable_data<T>(ctx.GetPlace());
|
|
} else {
|
|
out->Resize(framework::make_ddim({0}));
|
|
}
|
|
VLOG(3) << "gpu : " << gpu_id << " invoke reduce. send " << x->numel()
|
|
<< " recv " << out->numel();
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclReduce(
|
|
x->data<T>(), recvbuffer, x->numel(), NCCLTypeWrapper<T>::type,
|
|
reduction_op_, root, comm->comms().at(idx),
|
|
ctx.cuda_device_context().stream()));
|
|
VLOG(3) << "gpu : " << gpu_id << " finished reduce. send " << x->numel()
|
|
<< " recv " << out->numel();
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class NCCLBcastKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
|
|
platform::errors::InvalidArgument(
|
|
"This kernel only runs on GPU device."));
|
|
int root = ctx.Attr<int>("root");
|
|
auto* comm = ctx.Input<Communicator>("Communicator");
|
|
// device id
|
|
int gpu_id =
|
|
BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace()).GetDeviceId();
|
|
int idx = comm->GetCommId(gpu_id);
|
|
if (idx == root) {
|
|
auto* x = ctx.Input<LoDTensor>("X");
|
|
VLOG(3) << "gpu : " << gpu_id << " invoke Bcast. send " << x->numel();
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclBcast(
|
|
reinterpret_cast<void*>(const_cast<T*>(x->data<T>())), x->numel(),
|
|
NCCLTypeWrapper<T>::type, root, comm->comms().at(idx),
|
|
ctx.cuda_device_context().stream()));
|
|
VLOG(3) << "gpu : " << gpu_id << " finished Bcast.";
|
|
} else {
|
|
auto* out = ctx.Output<LoDTensor>("Out");
|
|
VLOG(3) << "gpu : " << gpu_id << " invoke Bcast. recv buffer "
|
|
<< framework::product(out->dims());
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclBcast(
|
|
out->mutable_data<T>(ctx.GetPlace()), out->numel(),
|
|
NCCLTypeWrapper<T>::type, root, comm->comms().at(idx),
|
|
ctx.cuda_device_context().stream()));
|
|
VLOG(3) << "gpu : " << gpu_id << " finished Bcast. recv " << out->numel();
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP_CUDA_KERNEL(ncclAllReduce, ops::NCCLAllReduceKernel<float>);
|
|
REGISTER_OP_CUDA_KERNEL(ncclBcast, ops::NCCLBcastKernel<float>);
|
|
REGISTER_OP_CUDA_KERNEL(ncclReduce, ops::NCCLReduceKernel<float>);
|