You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/trainer/tests/test_Trainer.cpp

110 lines
3.2 KiB

/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <paddle/utils/PythonUtil.h>
#include <paddle/utils/Version.h>
#include "paddle/trainer/Trainer.h"
#include <gtest/gtest.h>
using namespace paddle; // NOLINT
using namespace std; // NOLINT
static const string& configFile1 = "trainer/tests/sample_trainer_config.conf";
static const string& configFile2 =
"trainer/tests/sample_trainer_config_hsigmoid.conf";
static const string& configFile3 = "trainer/tests/chunking.conf";
static const string& configFile4 =
"trainer/tests/sample_trainer_config_parallel.conf";
P_DECLARE_bool(use_gpu);
P_DECLARE_string(config);
P_DECLARE_int32(gpu_id);
P_DECLARE_bool(allow_only_one_model_on_one_gpu);
void checkGradientTest(const string& configFile, bool useGpu, bool parallel,
int trainerCount = 1) {
FLAGS_use_gpu = useGpu;
FLAGS_parallel_nn = parallel;
FLAGS_config = configFile;
FLAGS_trainer_count = trainerCount;
LOG(INFO) << " useGpu=" << useGpu << " trainerCount=" << trainerCount
<< " configFile=" << configFile;
Trainer trainer;
trainer.init(TrainerConfigHelper::createFromFlagConfig());
EXPECT_LE(fabs(trainer.checkGradient()), 0.02);
}
TEST(checkGradient, cpu) { checkGradientTest(configFile1, false, false); }
#ifndef PADDLE_ONLY_CPU
TEST(checkGradient, gpu) { checkGradientTest(configFile1, true, false); }
TEST(checkGradient, multiGpu) {
int numGpu;
numGpu = hl_get_device_count();
for (auto count : {2, 4}) {
if (count <= numGpu) {
checkGradientTest(configFile1, true, false, count);
}
}
}
TEST(checkGradient, parallel) { checkGradientTest(configFile4, true, true); }
TEST(checkGradient, multiParallel) {
FLAGS_allow_only_one_model_on_one_gpu = false;
checkGradientTest(configFile4, true, true, 2);
FLAGS_allow_only_one_model_on_one_gpu = true;
}
#endif
TEST(checkGradient, multi) {
int numGpu;
if (version::isWithGpu()) {
numGpu = hl_get_device_count();
} else {
numGpu = 0;
}
for (bool useGpu : {false, true}) {
for (auto count : {2, 4}) {
if (useGpu && count > numGpu) continue;
checkGradientTest(configFile1, useGpu, false, count);
}
}
}
TEST(checkGradient, hsigmoid) { checkGradientTest(configFile2, false, false); }
TEST(checkGradient, chunk) {
EXPECT_EQ(0, system("python2 trainer/tests/gen_proto_data.py"));
checkGradientTest(configFile3, false, false);
#ifndef PADDLE_ONLY_CPU
checkGradientTest(configFile3, true, true);
#endif
}
TEST(checkGradient, non_parallel) {
checkGradientTest(configFile4, false, false);
}
int main(int argc, char** argv) {
initMain(argc, argv);
initPython(argc, argv);
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}