You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/trainer/tests/test_config.conf

170 lines
3.6 KiB

#edit-mode: -*- python -*-
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#Todo(luotao02) This config is only used for unitest. It is out of date now, and will be updated later.
default_initial_std(0.5)
model_type("nn")
DataLayer(
name = "input",
size = 3,
)
DataLayer(
name = "weight",
size = 1,
)
Layer(
name = "layer1_1",
type = "fc",
size = 5,
active_type = "sigmoid",
inputs = "input",
)
Layer(
name = "layer1_2",
type = "fc",
size = 12,
active_type = "linear",
inputs = Input("input", parameter_name='sharew'),
)
Layer(
name = "layer1_3",
type = "fc",
size = 3,
active_type = "tanh",
inputs = "input",
)
Layer(
name = "layer1_5",
type = "fc",
size = 3,
active_type = "tanh",
inputs = Input("input",
learning_rate=0.01,
momentum=0.9,
decay_rate=0.05,
initial_mean=0.0,
initial_std=0.01,
format = "csc",
nnz = 4)
)
FCLayer(
name = "layer1_4",
size = 5,
active_type = "square",
inputs = "input",
drop_rate = 0.5,
)
Layer(
name = "pool",
type = "pool",
inputs = Input("layer1_2",
pool = Pool(pool_type="cudnn-avg-pool",
channels = 1,
size_x = 2,
size_y = 3,
img_width = 3,
padding = 1,
padding_y = 2,
stride = 2,
stride_y = 3))
)
Layer(
name = "concat",
type = "concat",
inputs = ["layer1_3", "layer1_4"],
)
MixedLayer(
name = "output",
size = 3,
active_type = "softmax",
inputs = [
FullMatrixProjection("layer1_1",
learning_rate=0.1),
TransposedFullMatrixProjection("layer1_2", parameter_name='sharew'),
FullMatrixProjection("concat"),
IdentityProjection("layer1_3"),
],
)
Layer(
name = "label",
type = "data",
size = 1,
)
Layer(
name = "cost",
type = "multi-class-cross-entropy",
inputs = ["output", "label", "weight"],
)
Layer(
name = "cost2",
type = "nce",
num_classes = 3,
active_type = "sigmoid",
neg_sampling_dist = [0.1, 0.3, 0.6],
inputs = ["layer1_2", "label", "weight"],
)
Evaluator(
name = "error",
type = "classification_error",
inputs = ["output", "label", "weight"]
)
Inputs("input", "label", "weight")
Outputs("cost", "cost2")
TrainData(
ProtoData(
files = "dummy_list",
constant_slots = [1.0],
async_load_data = True,
)
)
TestData(
SimpleData(
files = "trainer/tests/sample_filelist.txt",
feat_dim = 3,
context_len = 0,
buffer_capacity = 1000000,
async_load_data = False,
),
)
Settings(
algorithm = "sgd",
num_batches_per_send_parameter = 1,
num_batches_per_get_parameter = 1,
batch_size = 100,
learning_rate = 0.001,
learning_rate_decay_a = 1e-5,
learning_rate_decay_b = 0.5,
)