You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/imperative/reducer.h

208 lines
6.8 KiB

// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <iostream>
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/variable_wrapper.h"
#include "paddle/fluid/memory/memory.h"
#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/imperative/all_reduce.h"
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"
#include "paddle/fluid/platform/cuda_resource_pool.h"
#endif
namespace paddle {
namespace imperative {
#if defined(PADDLE_WITH_NCCL)
template <typename T>
void ConcatTensorsForAllReduce(
const platform::CUDADeviceContext& context,
const std::vector<framework::Tensor>& dense_tensors_,
framework::Variable* p_dense_contents) {
operators::math::ConcatFunctor<platform::CUDADeviceContext, T>
concat_functor_;
concat_functor_(context, dense_tensors_, 0,
p_dense_contents->GetMutable<framework::LoDTensor>());
}
template <typename T>
void SplitTensorsForAllReduce(const platform::CUDADeviceContext& context,
framework::Variable* p_dense_contents,
std::vector<framework::Tensor>* p_dense_tensors) {
auto* in = p_dense_contents->GetMutable<framework::LoDTensor>();
std::vector<framework::Tensor*> outs;
std::vector<const framework::Tensor*> shape_refer;
outs.reserve(p_dense_tensors->size());
shape_refer.reserve(p_dense_tensors->size());
for (auto& tensor : *p_dense_tensors) {
outs.emplace_back(&tensor);
shape_refer.emplace_back(&tensor);
}
// Sometimes direct copies will be faster
if (p_dense_tensors->size() < 10) {
operators::StridedMemcpyWithAxis0<T>(context, *in, shape_refer, &outs);
} else {
operators::math::SplitFunctor<platform::CUDADeviceContext, T>
split_functor_;
split_functor_(context, *in, shape_refer, 0, &outs);
}
}
class Group {
public:
// Here, we use dense_contents_ & sparse_contents_ to
// achieve the tensor fuse. When is_sparse_ is true, sparse_contents_ work,
// conversely, dense_contents_ works. It is mutex relationship.
framework::Variable dense_contents_;
framework::Variable* sparse_contents_ = nullptr;
bool is_sparse_ = false;
// for concat kernel
std::vector<framework::Tensor> dense_tensors_;
std::vector<size_t> length_;
int64_t all_length_{0};
// Global indices of participating variables in the group
std::vector<size_t> variable_indices_;
// Number of params that haven't been ready. When it is 0, it means
// the group is ready.
size_t pending_ = -1;
// external message of group
framework::proto::VarType::Type dtype_;
// context is used to select the stream for concat
void ConcatTensors(const platform::CUDADeviceContext& context);
// context is used to select the stream for split
void SplitTensors(const platform::CUDADeviceContext& context);
friend std::ostream& operator<<(std::ostream&, const Group&);
};
struct VariableLocator {
// record the index in groups_
size_t group_index;
size_t inside_group_index;
};
class Reducer {
public:
explicit Reducer(
const std::vector<std::shared_ptr<imperative::VarBase>>& vars,
const std::vector<std::vector<size_t>>& group_indices,
const std::vector<bool>& is_sparse_gradient,
std::shared_ptr<imperative::ParallelContext> parallel_ctx,
const std::vector<size_t>& group_size_limits);
virtual ~Reducer() {}
void InitializeGroups(const std::vector<std::vector<size_t>>& group_indices);
void InitializeDenseGroups(const std::vector<size_t>& variable_indices_,
Group* p_group);
void PrepareForBackward();
void AddDistHook(VariableWrapper* var_warpper, size_t var_index);
void MarkDenseVarReady(size_t var_index, VariableWrapper* var_warpper);
void MarkSparseVarReady(size_t var_index, VariableWrapper* var_warpper);
void MarkGroupReady(size_t group_index);
void FinalizeBackward();
void ReleaseReducer();
std::vector<std::vector<size_t>> RebuildGruops();
void CreateGroupEvents(int group_num);
// Reducer Singleton
static std::shared_ptr<Reducer> SetInstance(
const std::vector<std::shared_ptr<imperative::VarBase>>& vars,
const std::vector<std::vector<size_t>>& group_indices,
const std::vector<bool>& is_sparse_gradient,
std::shared_ptr<imperative::ParallelContext> parallel_ctx,
const std::vector<size_t>& group_size_limits) {
if (NULL == s_instance_) {
s_instance_.reset(new paddle::imperative::Reducer(
vars, group_indices, is_sparse_gradient, parallel_ctx,
group_size_limits));
}
return s_instance_;
}
static std::shared_ptr<Reducer> GetInstance() {
PADDLE_ENFORCE_EQ(
s_instance_ != NULL, true,
platform::errors::InvalidArgument("Reducer is not initialized."));
return s_instance_;
}
private:
std::vector<std::shared_ptr<imperative::VarBase>> vars_;
std::vector<std::vector<size_t>> group_indices_;
static std::shared_ptr<Reducer> s_instance_;
std::vector<Group> groups_;
size_t next_group_ = 0;
platform::Place place_;
std::once_flag once_flag_;
std::vector<bool> is_sparse_gradient_;
std::shared_ptr<imperative::ParallelContext> parallel_ctx_;
std::vector<VariableLocator> variable_locators_;
// Following variables are to help sync stream
std::vector<std::shared_ptr<platform::CudaEventObject>> group_events_;
std::vector<std::shared_ptr<platform::CudaEventObject>> comm_events_;
cudaStream_t compute_stream_;
std::vector<cudaStream_t> comm_streams_;
int nrings_ = 1;
// Following variables are to help rebuild group
bool has_rebuilt_group_{false};
std::vector<std::shared_ptr<imperative::VarBase>> rebuild_vars_;
std::vector<int64_t> rebuild_var_indices_;
const std::vector<size_t> group_size_limits_;
};
std::vector<std::vector<size_t>> AssignGroupBySize(
const std::vector<std::shared_ptr<imperative::VarBase>>& tensors,
const std::vector<bool>& is_sparse_gradient,
const std::vector<size_t>& group_size_limits,
const std::vector<int64_t>& tensor_indices = {});
#endif
} // namespace imperative
} // namespace paddle