You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/sequence_concat_op.cc

103 lines
3.8 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/sequence_concat_op.h"
#include <vector>
namespace paddle {
namespace operators {
class SeqConcatOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "The inputs of sequence concat op").AsDuplicable();
AddOutput("Out", "The output of sequence concat op");
AddComment(
"Sequence Concat Op\n"
"It will concat LoD tensors by its sequence information.\n"
"For example:\n"
" LoD of X1 = [0, 3, 7]\n"
" LoD of X2 = [0, 7, 9]\n"
" Result LoD is [0, (3+7), (7+9)]\n"
" i.e.[0, 10, 16]\n");
}
};
class SeqConcatShapeInferer : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *context) const override {
PADDLE_ENFORCE(context->HasInputs("X"),
"Input(X) of Sequence Concat Op should not be null.");
PADDLE_ENFORCE(context->HasOutput("Out"),
"Output(Out) of Sequence Concat Op should not be null.");
PADDLE_ENFORCE_GT(context->Inputs("X").size(), 1,
"The number of input sequences is at least two.");
auto x_dims = context->GetInputsDim("X");
int64_t batch_size = 0;
int64_t feature_size = 0;
std::vector<int64_t> out_dims;
for (auto &x_dim : x_dims) {
if (out_dims.empty()) {
out_dims = framework::vectorize(x_dim);
}
batch_size += x_dim[0];
if (feature_size == 0) {
feature_size = framework::product(x_dim) / x_dim[0];
} else {
PADDLE_ENFORCE_EQ(
feature_size, framework::product(x_dim) / x_dim[0],
"Inputs of sequence concat must have same feature size");
}
}
if (batch_size < 0) {
batch_size = -1; // Normalize batch size for compile time.
}
out_dims[0] = batch_size;
context->SetOutputDim("Out", framework::make_ddim(out_dims));
if (!context->IsRuntime()) { // Runtime LoD infershape will be computed
// in Kernel.
context->ShareLoD("X", "Out");
}
}
};
class SeqConcatGradShapeInferer : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *context) const override {
context->SetOutputsDim(framework::GradVarName("X"),
context->GetInputsDim("X"));
}
};
} // namespace operators
} // namespace paddle
namespace op = paddle::operators;
REGISTER_OPERATOR(sequence_concat, paddle::framework::OperatorWithKernel,
op::SeqConcatOpMaker, op::SeqConcatShapeInferer,
paddle::framework::DefaultGradOpDescMaker<false>);
template <typename T>
using Kernel = op::SeqConcatKernel<paddle::platform::CPUDeviceContext, T>;
REGISTER_OP_CPU_KERNEL(sequence_concat, Kernel<float>, Kernel<double>,
Kernel<int64_t>);
REGISTER_OPERATOR(sequence_concat_grad, paddle::framework::OperatorWithKernel,
op::SeqConcatGradShapeInferer);
template <typename T>
using GradKernel =
op::SeqConcatGradKernel<paddle::platform::CPUDeviceContext, T>;
REGISTER_OP_CPU_KERNEL(sequence_concat_grad, GradKernel<float>,
GradKernel<double>, GradKernel<int64_t>);