You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
141 lines
5.6 KiB
141 lines
5.6 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/math/sequence_padding.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
namespace math {
|
|
|
|
template <typename T>
|
|
void CopyValidData(framework::Tensor* dst_tensor,
|
|
const framework::Tensor* src_tensor,
|
|
const framework::Vector<size_t>& seq_offsets,
|
|
int pad_seq_len, int step_width, bool norm_by_len,
|
|
CopyType type, PadLayout layout) {
|
|
int seq_num = seq_offsets.size() - 1;
|
|
const T* src_data = src_tensor->data<T>();
|
|
T* dst_data = dst_tensor->data<T>();
|
|
|
|
int seq_cpy_gap = step_width;
|
|
int pad_cpy_gap =
|
|
layout == kBatchLengthWidth ? step_width : seq_num * step_width;
|
|
for (int seq_idx = 0; seq_idx < seq_num; ++seq_idx) {
|
|
int valid_seq_len = seq_offsets[seq_idx + 1] - seq_offsets[seq_idx];
|
|
PADDLE_ENFORCE_GE(
|
|
pad_seq_len, valid_seq_len,
|
|
"The padded sequence length can not be less than its original length.");
|
|
int seq_data_offset = seq_offsets[seq_idx] * step_width;
|
|
int pad_data_offset = layout == kBatchLengthWidth
|
|
? seq_idx * pad_seq_len * step_width
|
|
: seq_idx * step_width;
|
|
float scale = 1.0f / static_cast<float>(valid_seq_len);
|
|
|
|
for (int step_idx = 0; step_idx < valid_seq_len; ++step_idx) {
|
|
const T* src =
|
|
src_data + (type == kSeqToPad ? seq_data_offset : pad_data_offset);
|
|
T* dst =
|
|
dst_data + (type == kSeqToPad ? pad_data_offset : seq_data_offset);
|
|
memcpy(dst, src, step_width * sizeof(T));
|
|
if (norm_by_len) {
|
|
for (int i = 0; i < step_width; ++i) {
|
|
*(dst + i) *= scale;
|
|
}
|
|
}
|
|
seq_data_offset += seq_cpy_gap;
|
|
pad_data_offset += pad_cpy_gap;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
class PaddingLoDTensorFunctor<platform::CPUDeviceContext, T> {
|
|
public:
|
|
void operator()(const platform::CPUDeviceContext& context,
|
|
const framework::LoDTensor& seq_tensor,
|
|
framework::LoDTensor* pad_tensor,
|
|
const framework::LoDTensor& pad_value, int pad_seq_len = -1,
|
|
int lod_level = 0, bool norm_by_times = false,
|
|
const PadLayout layout = kBatchLengthWidth) {
|
|
auto seq_lod = seq_tensor.lod();
|
|
const auto seq_offsets = framework::ToAbsOffset(seq_lod)[lod_level];
|
|
const auto& seq_tensor_dims = seq_tensor.dims();
|
|
const auto& pad_tensor_dims = pad_tensor->dims();
|
|
if (pad_seq_len == -1) {
|
|
pad_seq_len = MaximumSequenceLength(seq_offsets);
|
|
}
|
|
int step_width = seq_tensor.numel() / seq_tensor_dims[0];
|
|
|
|
CheckDims(seq_tensor_dims, pad_tensor_dims, seq_offsets, pad_seq_len,
|
|
step_width, layout);
|
|
PADDLE_ENFORCE(pad_value.numel() == 1 || pad_value.numel() == step_width,
|
|
"The numel of 'pad_value' can only be 1 or be equal to the "
|
|
"'step_width'.");
|
|
|
|
// fill padding value
|
|
T* pad_data = pad_tensor->data<T>();
|
|
const T* pad_value_data = pad_value.data<T>();
|
|
if (pad_value.numel() == 1) {
|
|
for (int i = 0; i < pad_tensor->numel(); ++i) {
|
|
pad_data[i] = *pad_value_data;
|
|
}
|
|
} else {
|
|
for (int i = 0; i < pad_tensor->numel(); i += step_width) {
|
|
memcpy(pad_data + i, pad_value_data, step_width * sizeof(T));
|
|
}
|
|
}
|
|
|
|
CopyValidData<T>(pad_tensor, &seq_tensor, seq_offsets, pad_seq_len,
|
|
step_width, norm_by_times, kSeqToPad, layout);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class UnpaddingLoDTensorFunctor<platform::CPUDeviceContext, T> {
|
|
public:
|
|
void operator()(const platform::CPUDeviceContext& context,
|
|
const framework::LoDTensor& pad_tensor,
|
|
framework::LoDTensor* seq_tensor, int pad_seq_len = -1,
|
|
int lod_level = 0, bool norm_by_times = false,
|
|
const PadLayout layout = kBatchLengthWidth) {
|
|
auto seq_offsets = framework::ToAbsOffset(seq_tensor->lod())[lod_level];
|
|
const auto& seq_tensor_dims = seq_tensor->dims();
|
|
const auto& pad_tensor_dims = pad_tensor.dims();
|
|
if (pad_seq_len == -1) {
|
|
pad_seq_len = MaximumSequenceLength(seq_offsets);
|
|
}
|
|
int step_width = seq_tensor->numel() / seq_tensor_dims[0];
|
|
|
|
CheckDims(seq_tensor_dims, pad_tensor_dims, seq_offsets, pad_seq_len,
|
|
step_width, layout);
|
|
|
|
CopyValidData<T>(seq_tensor, &pad_tensor, seq_offsets, pad_seq_len,
|
|
step_width, norm_by_times, kPadToSeq, layout);
|
|
}
|
|
};
|
|
|
|
template class PaddingLoDTensorFunctor<platform::CPUDeviceContext, int>;
|
|
template class PaddingLoDTensorFunctor<platform::CPUDeviceContext, int64_t>;
|
|
template class PaddingLoDTensorFunctor<platform::CPUDeviceContext, float>;
|
|
template class PaddingLoDTensorFunctor<platform::CPUDeviceContext, double>;
|
|
|
|
template class UnpaddingLoDTensorFunctor<platform::CPUDeviceContext, int>;
|
|
template class UnpaddingLoDTensorFunctor<platform::CPUDeviceContext, int64_t>;
|
|
template class UnpaddingLoDTensorFunctor<platform::CPUDeviceContext, float>;
|
|
template class UnpaddingLoDTensorFunctor<platform::CPUDeviceContext, double>;
|
|
|
|
} // namespace math
|
|
} // namespace operators
|
|
} // namespace paddle
|