You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
174 lines
5.4 KiB
174 lines
5.4 KiB
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
|
|
#include "paddle/utils/Logging.h"
|
|
|
|
#include "Layer.h"
|
|
#include "paddle/math/Matrix.h"
|
|
#include "paddle/utils/Stat.h"
|
|
|
|
namespace paddle {
|
|
|
|
/**
|
|
* A layer for extracting the last instance of the input sequence.
|
|
* Input: a sequence
|
|
* If SequenceLevel = kNonseq:
|
|
* Output: a sequence containing only the last instance of the input sequence
|
|
* If SequenceLevel = kSeq:
|
|
* Check input sequence must has sub-sequence
|
|
* Output: a sequence containing only the last instance of each sub-sequence
|
|
* of the input sequence
|
|
*/
|
|
|
|
class SequenceLastInstanceLayer : public Layer {
|
|
protected:
|
|
std::unique_ptr<Weight> biases_;
|
|
MatrixPtr tmpSrc_;
|
|
MatrixPtr tmpDest_;
|
|
enum SequenceLevel { kNonSeq = 0, kSeq = 1 };
|
|
int type_;
|
|
|
|
public:
|
|
explicit SequenceLastInstanceLayer(const LayerConfig& config)
|
|
: Layer(config) {}
|
|
|
|
~SequenceLastInstanceLayer() {}
|
|
|
|
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
|
|
|
|
void forward(PassType passType);
|
|
void backward(const UpdateCallback& callback = nullptr);
|
|
};
|
|
|
|
REGISTER_LAYER(seqlastins, SequenceLastInstanceLayer);
|
|
|
|
bool SequenceLastInstanceLayer::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
/* Initialize the basic parent class */
|
|
Layer::init(layerMap, parameterMap);
|
|
|
|
// seqlastins layer should have exactly 1 input
|
|
CHECK_EQ(1U, inputLayers_.size());
|
|
|
|
/* initialize biases_ */
|
|
if (biasParameter_.get() != NULL) {
|
|
biases_ = std::unique_ptr<Weight>(new Weight(1, getSize(), biasParameter_));
|
|
}
|
|
|
|
tmpSrc_ =
|
|
Matrix::create(nullptr, /* height= */ 1, 1, /* trans= */ false, useGpu_);
|
|
tmpDest_ =
|
|
Matrix::create(nullptr, /* height= */ 1, 1, /* trans= */ false, useGpu_);
|
|
|
|
// transform to which sequence type
|
|
if (config_.trans_type() == "non-seq") {
|
|
type_ = kNonSeq;
|
|
} else if (config_.trans_type() == "seq") {
|
|
type_ = kSeq;
|
|
} else {
|
|
LOG(FATAL) << "Unknown trans_type: " << config_.trans_type();
|
|
}
|
|
setNeedSequenceInfo(false);
|
|
return true;
|
|
}
|
|
|
|
void SequenceLastInstanceLayer::forward(PassType passType) {
|
|
Layer::forward(passType);
|
|
|
|
size_t dim = getSize();
|
|
const Argument& input = getInput(0);
|
|
|
|
// check
|
|
auto startPositions =
|
|
type_ ? input.subSequenceStartPositions->getVector(false)
|
|
: input.sequenceStartPositions->getVector(false);
|
|
size_t height = type_ ? input.getNumSubSequences() : input.getNumSequences();
|
|
CHECK_EQ(dim, input.value->getWidth());
|
|
CHECK_EQ(startPositions->getData()[height], input.getBatchSize());
|
|
CHECK_EQ(height, startPositions->getSize() - 1);
|
|
if (type_) {
|
|
// when trans_type = seq, input must hasSubseq
|
|
CHECK_EQ(input.hasSubseq(), 1UL);
|
|
}
|
|
|
|
reserveOutput(height, dim);
|
|
const int* starts = startPositions->getData();
|
|
MatrixPtr inputValue = getInputValue(0);
|
|
MatrixPtr outputValue = getOutputValue();
|
|
|
|
{
|
|
AsyncGpuBlock asyncGpuBlock;
|
|
REGISTER_TIMER_INFO("SequenceLastInstanceLayerForward", getName().c_str());
|
|
|
|
for (size_t seqId = 0; seqId < height; ++seqId) {
|
|
int insId =
|
|
config_.select_first() ? starts[seqId] : starts[seqId + 1] - 1;
|
|
|
|
outputValue->subMatrix(seqId, 1, tmpDest_)
|
|
->assign(*(inputValue->subMatrix(insId, 1, tmpSrc_)));
|
|
}
|
|
/* If type_ = kNonSeq, both seq has or not has sub-seq degrade to a non-seq,
|
|
* thus, in this case, output_ has no sequenceStartPositions.
|
|
* If type_ = kSeq, seq has sub-seq degrades to a seq, thus, only in this
|
|
* case, we should compute the new sequenceStartPositions.
|
|
*/
|
|
if (type_) {
|
|
output_.degradeSequence(input, useGpu_);
|
|
}
|
|
}
|
|
|
|
if (biases_.get() != NULL) {
|
|
outputValue->addBias(*(biases_->getW()), 1);
|
|
}
|
|
|
|
/* activation, should set to 'linear' in most cases */
|
|
forwardActivation();
|
|
}
|
|
|
|
void SequenceLastInstanceLayer::backward(const UpdateCallback& callback) {
|
|
/* activation, should set to 'linear' in most cases */
|
|
backwardActivation();
|
|
|
|
if (biases_ && biases_->getWGrad()) {
|
|
biases_->getWGrad()->collectBias(*getOutputGrad(), 1);
|
|
|
|
// Increasing the number of gradient
|
|
biases_->getParameterPtr()->incUpdate(callback);
|
|
}
|
|
|
|
MatrixPtr inputGrad = getInputGrad(0);
|
|
MatrixPtr outputGrad = getOutputGrad();
|
|
auto startPositions =
|
|
type_ ? getInput(0).subSequenceStartPositions->getVector(false)
|
|
: getInput(0).sequenceStartPositions->getVector(false);
|
|
const int* starts = startPositions->getData();
|
|
size_t numSequences = startPositions->getSize() - 1;
|
|
|
|
if (inputGrad) {
|
|
AsyncGpuBlock asyncGpuBlock;
|
|
REGISTER_TIMER_INFO("SequenceLastInstanceLayerBackward", getName().c_str());
|
|
|
|
for (size_t seqId = 0; seqId < numSequences; ++seqId) {
|
|
int insId =
|
|
config_.select_first() ? starts[seqId] : starts[seqId + 1] - 1;
|
|
|
|
inputGrad->subMatrix(insId, 1, tmpDest_)
|
|
->add(*(outputGrad->subMatrix(seqId, 1, tmpSrc_)));
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace paddle
|