You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
181 lines
6.0 KiB
181 lines
6.0 KiB
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import paddle.trainer.PyDataProvider2 as dp2
|
|
import collections
|
|
import swig_paddle
|
|
|
|
__all__ = ['DataProviderConverter']
|
|
|
|
|
|
class IScanner(object):
|
|
def __init__(self, input_type, pos):
|
|
self.input_type = input_type
|
|
assert isinstance(self.input_type, dp2.InputType)
|
|
self.pos = pos
|
|
|
|
def scan(self, dat):
|
|
pass
|
|
|
|
def finish_scan(self, argument):
|
|
pass
|
|
|
|
|
|
class DenseScanner(IScanner):
|
|
def __init__(self, input_type, pos):
|
|
IScanner.__init__(self, input_type, pos)
|
|
self.__mat__ = []
|
|
self.__height__ = 0
|
|
|
|
def scan(self, dat):
|
|
self.__mat__.extend(dat)
|
|
self.__height__ += 1
|
|
|
|
def finish_scan(self, argument):
|
|
assert isinstance(argument, swig_paddle.Arguments)
|
|
assert isinstance(self.input_type, dp2.InputType)
|
|
m = swig_paddle.Matrix.createDense(self.__mat__,
|
|
self.__height__,
|
|
self.input_type.dim,
|
|
False)
|
|
argument.setSlotValue(self.pos, m)
|
|
|
|
|
|
class SparseBinaryScanner(IScanner):
|
|
def __init__(self, input_type, pos):
|
|
IScanner.__init__(self, input_type, pos)
|
|
self.__rows__ = [0]
|
|
self.__cols__ = []
|
|
self.__height__ = 0
|
|
self.__nnz__ = 0
|
|
self.__value__ = []
|
|
|
|
def scan(self, dat):
|
|
self.extend_cols(dat)
|
|
self.__rows__.append(len(dat))
|
|
|
|
def extend_cols(self, dat):
|
|
self.__cols__.extend(dat)
|
|
|
|
def finish_scan(self, argument):
|
|
assert isinstance(argument, swig_paddle.Arguments)
|
|
assert isinstance(self.input_type, dp2.InputType)
|
|
m = swig_paddle.Matrix.createSparse(self.__height__,
|
|
self.input_type.dim,
|
|
len(self.__cols__),
|
|
len(self.__value__) == 0)
|
|
assert isinstance(m, swig_paddle.Matrix)
|
|
m.sparseCopyFrom(self.__rows__, self.__cols__, self.__value__)
|
|
argument.setSlotValue(self.pos, m)
|
|
|
|
|
|
class SparseFloatScanner(SparseBinaryScanner):
|
|
def __init__(self, input_type, pos):
|
|
SparseBinaryScanner.__init__(self, input_type, pos)
|
|
|
|
def extend_cols(self, dat):
|
|
self.__cols__.extend((x[0] for x in dat))
|
|
self.__value__.extend((x[1] for x in dat))
|
|
|
|
|
|
class IndexScanner(IScanner):
|
|
def __init__(self, input_type, pos):
|
|
IScanner.__init__(self, input_type, pos)
|
|
self.__ids__ = []
|
|
|
|
def scan(self, dat):
|
|
self.__ids__.append(dat)
|
|
|
|
def finish_scan(self, argument):
|
|
ids = swig_paddle.IVector.create(self.__ids__)
|
|
assert isinstance(argument, swig_paddle.Arguments)
|
|
argument.setSlotIds(self.pos, ids)
|
|
|
|
|
|
class SequenceScanner(IScanner):
|
|
def __init__(self, input_type, pos, inner_scanner, setter):
|
|
IScanner.__init__(self, input_type, pos)
|
|
self.__seq__ = [0]
|
|
self.__inner_scanner__ = inner_scanner
|
|
self.__setter__ = setter
|
|
|
|
def scan(self, dat):
|
|
self.__seq__.append(self.__seq__[-1] + self.get_size(dat))
|
|
for each in dat:
|
|
self.__inner_scanner__.scan(each)
|
|
|
|
def finish_scan(self, argument):
|
|
seq = swig_paddle.IVector.create(self.__seq__, False)
|
|
self.__setter__(argument, self.pos, seq)
|
|
self.__inner_scanner__.finish_scan(argument)
|
|
|
|
def get_size(self, dat):
|
|
if isinstance(self.__inner_scanner__, SequenceScanner):
|
|
return sum(self.__inner_scanner__.get_size(item) for item in dat)
|
|
else:
|
|
return len(dat)
|
|
|
|
|
|
class DataProviderConverter(object):
|
|
def __init__(self, input_types):
|
|
self.input_types = input_types
|
|
assert isinstance(self.input_types, collections.Sequence)
|
|
for each in self.input_types:
|
|
assert isinstance(each, dp2.InputType)
|
|
|
|
def convert(self, dat, argument=None):
|
|
if argument is None:
|
|
argument = swig_paddle.Arguments.createArguments(0)
|
|
assert isinstance(argument, swig_paddle.Arguments)
|
|
argument.resize(len(self.input_types))
|
|
|
|
scanners = [DataProviderConverter.create_scanner(i, each_type)
|
|
for i, each_type in enumerate(self.input_types)]
|
|
|
|
for each_sample in dat:
|
|
for each_step, scanner in zip(each_sample, scanners):
|
|
scanner.scan(each_step)
|
|
|
|
for scanner in scanners:
|
|
scanner.finish_scan(argument)
|
|
|
|
return argument
|
|
|
|
def __call__(self, dat, argument=None):
|
|
return self.convert(dat, argument)
|
|
|
|
@staticmethod
|
|
def create_scanner(i, each):
|
|
assert isinstance(each, dp2.InputType)
|
|
retv = None
|
|
if each.type == dp2.DataType.Dense:
|
|
retv = DenseScanner(each, i)
|
|
elif each.type == dp2.DataType.Index:
|
|
retv = IndexScanner(each, i)
|
|
elif each.type == dp2.DataType.SparseNonValue:
|
|
retv = SparseBinaryScanner(each, i)
|
|
elif each.type == dp2.DataType.SparseValue:
|
|
retv = SparseFloatScanner(each, i)
|
|
assert retv is not None
|
|
|
|
if each.seq_type == dp2.SequenceType.SUB_SEQUENCE:
|
|
retv = SequenceScanner(each, i, retv, lambda a, p, seq:
|
|
a.setSlotSubSequenceStartPositions(p, seq))
|
|
|
|
if each.seq_type in [dp2.SequenceType.SUB_SEQUENCE,
|
|
dp2.SequenceType.SEQUENCE]:
|
|
retv = SequenceScanner(each, i, retv, lambda a, p, seq:
|
|
a.setSlotSequenceStartPositions(p, seq))
|
|
return retv
|