You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/lite/test_engine_lite.cc

135 lines
4.9 KiB

// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include "paddle/fluid/inference/utils/singleton.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/lite/engine.h"
#include "paddle/fluid/operators/lite/ut_helper.h"
namespace paddle {
namespace inference {
namespace lite {
using inference::lite::AddTensorToBlockDesc;
using paddle::inference::lite::AddFetchListToBlockDesc;
using inference::lite::CreateTensor;
using inference::lite::serialize_params;
void make_fake_model(std::string* model, std::string* param) {
framework::ProgramDesc program;
LOG(INFO) << "program.block size is " << program.Size();
auto* block_ = program.Proto()->mutable_blocks(0);
LOG(INFO) << "create block desc";
framework::BlockDesc block_desc(&program, block_);
auto* feed0 = block_desc.AppendOp();
feed0->SetType("feed");
feed0->SetInput("X", {"feed"});
feed0->SetOutput("Out", {"x"});
feed0->SetAttr("col", 0);
auto* feed1 = block_desc.AppendOp();
feed1->SetType("feed");
feed1->SetInput("X", {"feed"});
feed1->SetOutput("Out", {"y"});
feed1->SetAttr("col", 1);
LOG(INFO) << "create elementwise_add op";
auto* elt_add = block_desc.AppendOp();
elt_add->SetType("elementwise_add");
elt_add->SetInput("X", std::vector<std::string>({"x"}));
elt_add->SetInput("Y", std::vector<std::string>({"y"}));
elt_add->SetOutput("Out", std::vector<std::string>({"z"}));
elt_add->SetAttr("axis", -1);
LOG(INFO) << "create fetch op";
auto* fetch = block_desc.AppendOp();
fetch->SetType("fetch");
fetch->SetInput("X", std::vector<std::string>({"z"}));
fetch->SetOutput("Out", std::vector<std::string>({"out"}));
fetch->SetAttr("col", 0);
// Set inputs' variable shape in BlockDesc
AddTensorToBlockDesc(block_, "x", std::vector<int64_t>({2, 4}), true);
AddTensorToBlockDesc(block_, "y", std::vector<int64_t>({2, 4}), true);
AddTensorToBlockDesc(block_, "z", std::vector<int64_t>({2, 4}), false);
AddFetchListToBlockDesc(block_, "out");
*block_->add_ops() = *feed0->Proto();
*block_->add_ops() = *feed1->Proto();
*block_->add_ops() = *elt_add->Proto();
*block_->add_ops() = *fetch->Proto();
framework::Scope scope;
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
platform::CUDAPlace place;
platform::CUDADeviceContext ctx(place);
#else
platform::CPUPlace place;
platform::CPUDeviceContext ctx(place);
#endif
// Prepare variables.
std::vector<std::string> repetitive_params{"x", "y"};
CreateTensor(&scope, "x", std::vector<int64_t>({2, 4}));
CreateTensor(&scope, "y", std::vector<int64_t>({2, 4}));
ASSERT_EQ(block_->ops_size(), 4);
*model = program.Proto()->SerializeAsString();
serialize_params(param, &scope, repetitive_params);
}
TEST(EngineManager, engine) {
ASSERT_EQ(
inference::Singleton<inference::lite::EngineManager>::Global().Empty(),
true);
inference::lite::EngineConfig config;
make_fake_model(&(config.model), &(config.param));
LOG(INFO) << "prepare config";
const std::string unique_key("engine_0");
config.model_from_memory = true;
config.valid_places = {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
paddle::lite_api::Place({TARGET(kCUDA), PRECISION(kFloat)}),
#endif
paddle::lite_api::Place({TARGET(kX86), PRECISION(kFloat)}),
paddle::lite_api::Place({TARGET(kHost), PRECISION(kAny)}),
};
LOG(INFO) << "Create EngineManager";
inference::Singleton<inference::lite::EngineManager>::Global().Create(
unique_key, config);
LOG(INFO) << "Create EngineManager done";
ASSERT_EQ(
inference::Singleton<inference::lite::EngineManager>::Global().Empty(),
false);
ASSERT_EQ(inference::Singleton<inference::lite::EngineManager>::Global().Has(
unique_key),
true);
paddle::lite_api::PaddlePredictor* engine_0 =
inference::Singleton<inference::lite::EngineManager>::Global().Get(
unique_key);
CHECK_NOTNULL(engine_0);
inference::Singleton<inference::lite::EngineManager>::Global().DeleteAll();
CHECK(inference::Singleton<inference::lite::EngineManager>::Global().Get(
unique_key) == nullptr)
<< "the engine_0 should be nullptr";
}
} // namespace lite
} // namespace inference
} // namespace paddle