You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
158 lines
6.1 KiB
158 lines
6.1 KiB
from __future__ import print_function
|
|
import unittest
|
|
|
|
import paddle.v2.fluid.layers as layers
|
|
import paddle.v2.fluid.nets as nets
|
|
from paddle.v2.fluid.framework import Program, program_guard
|
|
from paddle.v2.fluid.param_attr import ParamAttr
|
|
|
|
|
|
class TestBook(unittest.TestCase):
|
|
def test_fit_a_line(self):
|
|
program = Program()
|
|
with program_guard(program, startup_program=Program()):
|
|
x = layers.data(name='x', shape=[13], dtype='float32')
|
|
y_predict = layers.fc(input=x, size=1, act=None)
|
|
y = layers.data(name='y', shape=[1], dtype='float32')
|
|
cost = layers.square_error_cost(input=y_predict, label=y)
|
|
avg_cost = layers.mean(x=cost)
|
|
self.assertIsNotNone(avg_cost)
|
|
program.append_backward(avg_cost)
|
|
|
|
print(str(program))
|
|
|
|
def test_recognize_digits_mlp(self):
|
|
program = Program()
|
|
with program_guard(program, startup_program=Program()):
|
|
# Change g_program, so the rest layers use `g_program`
|
|
images = layers.data(name='pixel', shape=[784], dtype='float32')
|
|
label = layers.data(name='label', shape=[1], dtype='int32')
|
|
hidden1 = layers.fc(input=images, size=128, act='relu')
|
|
hidden2 = layers.fc(input=hidden1, size=64, act='relu')
|
|
predict = layers.fc(input=hidden2, size=10, act='softmax')
|
|
cost = layers.cross_entropy(input=predict, label=label)
|
|
avg_cost = layers.mean(x=cost)
|
|
self.assertIsNotNone(avg_cost)
|
|
|
|
print(str(program))
|
|
|
|
def test_simple_conv2d(self):
|
|
program = Program()
|
|
with program_guard(program, startup_program=Program()):
|
|
images = layers.data(name='pixel', shape=[3, 48, 48], dtype='int32')
|
|
layers.conv2d(input=images, num_filters=3, filter_size=[4, 4])
|
|
|
|
print(str(program))
|
|
|
|
def test_conv2d_transpose(self):
|
|
program = Program()
|
|
with program_guard(program):
|
|
img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
|
|
layers.conv2d_transpose(input=img, num_filters=10, output_size=28)
|
|
print(str(program))
|
|
|
|
def test_recognize_digits_conv(self):
|
|
program = Program()
|
|
with program_guard(program, startup_program=Program()):
|
|
images = layers.data(
|
|
name='pixel', shape=[1, 28, 28], dtype='float32')
|
|
label = layers.data(name='label', shape=[1], dtype='int32')
|
|
conv_pool_1 = nets.simple_img_conv_pool(
|
|
input=images,
|
|
filter_size=5,
|
|
num_filters=2,
|
|
pool_size=2,
|
|
pool_stride=2,
|
|
act="relu")
|
|
conv_pool_2 = nets.simple_img_conv_pool(
|
|
input=conv_pool_1,
|
|
filter_size=5,
|
|
num_filters=4,
|
|
pool_size=2,
|
|
pool_stride=2,
|
|
act="relu")
|
|
|
|
predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
|
|
cost = layers.cross_entropy(input=predict, label=label)
|
|
avg_cost = layers.mean(x=cost)
|
|
|
|
program.append_backward(avg_cost)
|
|
|
|
print(str(program))
|
|
|
|
def test_word_embedding(self):
|
|
program = Program()
|
|
with program_guard(program, startup_program=Program()):
|
|
dict_size = 10000
|
|
embed_size = 32
|
|
first_word = layers.data(name='firstw', shape=[1], dtype='int64')
|
|
second_word = layers.data(name='secondw', shape=[1], dtype='int64')
|
|
third_word = layers.data(name='thirdw', shape=[1], dtype='int64')
|
|
forth_word = layers.data(name='forthw', shape=[1], dtype='int64')
|
|
next_word = layers.data(name='nextw', shape=[1], dtype='int64')
|
|
|
|
embed_first = layers.embedding(
|
|
input=first_word,
|
|
size=[dict_size, embed_size],
|
|
dtype='float32',
|
|
param_attr='shared_w')
|
|
embed_second = layers.embedding(
|
|
input=second_word,
|
|
size=[dict_size, embed_size],
|
|
dtype='float32',
|
|
param_attr='shared_w')
|
|
|
|
embed_third = layers.embedding(
|
|
input=third_word,
|
|
size=[dict_size, embed_size],
|
|
dtype='float32',
|
|
param_attr='shared_w')
|
|
embed_forth = layers.embedding(
|
|
input=forth_word,
|
|
size=[dict_size, embed_size],
|
|
dtype='float32',
|
|
param_attr='shared_w')
|
|
|
|
concat_embed = layers.concat(
|
|
input=[embed_first, embed_second, embed_third, embed_forth],
|
|
axis=1)
|
|
|
|
hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
|
|
predict_word = layers.fc(input=hidden1,
|
|
size=dict_size,
|
|
act='softmax')
|
|
cost = layers.cross_entropy(input=predict_word, label=next_word)
|
|
avg_cost = layers.mean(x=cost)
|
|
self.assertIsNotNone(avg_cost)
|
|
|
|
print(str(program))
|
|
|
|
def test_linear_chain_crf(self):
|
|
program = Program()
|
|
with program_guard(program, startup_program=Program()):
|
|
images = layers.data(name='pixel', shape=[784], dtype='float32')
|
|
label = layers.data(name='label', shape=[1], dtype='int32')
|
|
hidden = layers.fc(input=images, size=128)
|
|
crf = layers.linear_chain_crf(
|
|
input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
|
|
crf_decode = layers.crf_decoding(
|
|
input=hidden, param_attr=ParamAttr(name="crfw"))
|
|
self.assertNotEqual(crf, None)
|
|
self.assertNotEqual(crf_decode, None)
|
|
|
|
print(str(program))
|
|
|
|
def test_sigmoid_cross_entropy(self):
|
|
program = Program()
|
|
with program_guard(program):
|
|
dat = layers.data(name='data', shape=[10], dtype='float32')
|
|
lbl = layers.data(name='label', shape=[10], dtype='float32')
|
|
self.assertIsNotNone(
|
|
layers.sigmoid_cross_entropy_with_logits(
|
|
x=dat, label=lbl))
|
|
print(str(program))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|