You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
355 lines
14 KiB
355 lines
14 KiB
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <algorithm>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <set>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <unordered_set>
|
|
#include <vector>
|
|
|
|
#include <fstream>
|
|
#include <iostream>
|
|
|
|
#include "paddle/fluid/framework/lod_tensor.h"
|
|
#include "paddle/fluid/inference/lite/op_teller.h"
|
|
#include "paddle/fluid/inference/utils/singleton.h"
|
|
|
|
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
|
|
#include "paddle/fluid/framework/ir/subgraph_detector.h"
|
|
#include "paddle/fluid/inference/analysis/ir_passes/lite_subgraph_pass.h"
|
|
#include "paddle/fluid/string/pretty_log.h"
|
|
|
|
#include "paddle/fluid/inference/lite/engine.h"
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
namespace analysis {
|
|
|
|
using framework::ir::Node;
|
|
using framework::ir::Agent;
|
|
using framework::ir::SubGraphFuser;
|
|
using framework::ir::Graph;
|
|
|
|
namespace lite {
|
|
|
|
std::string UniqueKey(const std::vector<std::string>& engine_inputs,
|
|
const std::vector<std::string>& engine_outputs,
|
|
const std::string& id) {
|
|
std::string engine_hash_key = "";
|
|
for (auto name : engine_inputs) {
|
|
engine_hash_key += name;
|
|
}
|
|
for (auto name : engine_outputs) {
|
|
engine_hash_key += name;
|
|
}
|
|
engine_hash_key += id;
|
|
auto engine_key = std::to_string(std::hash<std::string>()(engine_hash_key));
|
|
return engine_key;
|
|
}
|
|
|
|
std::vector<std::string> IOVarsFilter(const std::vector<Node*>& nodes) {
|
|
std::set<std::string> names;
|
|
for (const auto& node : nodes) {
|
|
if (node->IsVar() && !node->Var()->Persistable()) {
|
|
names.insert(node->Name());
|
|
}
|
|
}
|
|
return std::vector<std::string>(names.begin(), names.end());
|
|
}
|
|
|
|
void StrToBinaryFile(const std::string& path, const std::string& str) {
|
|
std::ofstream file(path.c_str(), std::ios::binary);
|
|
file.write(str.c_str(), str.size());
|
|
file.close();
|
|
}
|
|
|
|
void ModifyHostSubgraphOps(
|
|
framework::ProgramDesc* host_program, framework::BlockDesc* host_sub_block,
|
|
const std::vector<framework::OpDesc*>& subgraph_ops) {
|
|
for (auto* op_desc : subgraph_ops) {
|
|
auto* sub_block_op = host_sub_block->AppendOp();
|
|
sub_block_op->CopyFrom(*op_desc);
|
|
if (op_desc->HasAttr("sub_block")) {
|
|
int32_t global_sub_id = host_sub_block->ID();
|
|
auto* op_sub_block =
|
|
host_program->MutableBlock(op_desc->GetBlockAttrId("sub_block"));
|
|
op_sub_block->Proto()->set_parent_idx(global_sub_id);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ModifyHostProgram(framework::ProgramDesc* host_program,
|
|
framework::BlockDesc* host_sub_block,
|
|
const std::unordered_set<Node*>& io_var_nodes,
|
|
const std::vector<framework::OpDesc*>& subgraph_ops) {
|
|
for (auto* var_node : io_var_nodes) {
|
|
auto* sub_block_var = host_sub_block->Var(var_node->Name());
|
|
sub_block_var->Proto()->CopyFrom(*var_node->Var()->Proto());
|
|
}
|
|
ModifyHostSubgraphOps(host_program, host_sub_block, subgraph_ops);
|
|
}
|
|
|
|
void AppendLiteSubBlocks(const std::vector<framework::OpDesc*>& subgraph_ops,
|
|
framework::ProgramDesc* engine_program,
|
|
framework::ProgramDesc* host_program,
|
|
const int32_t host_sub_id) {
|
|
std::unordered_map<int32_t, int32_t> sub_blocks_map;
|
|
std::unordered_set<int32_t> copied_host_ids;
|
|
sub_blocks_map[host_sub_id] = framework::kRootBlockIndex;
|
|
std::function<void(const std::vector<framework::OpDesc*>&)> append_sub_blocks;
|
|
append_sub_blocks = [&](const std::vector<framework::OpDesc*>& ops) {
|
|
for (auto* op_desc : ops) {
|
|
if (op_desc->HasAttr("sub_block")) {
|
|
int32_t host_op_sub_id = op_desc->GetBlockAttrId("sub_block");
|
|
if (copied_host_ids.count(host_op_sub_id)) continue;
|
|
size_t engine_block_size = engine_program->Size();
|
|
auto* host_op_sub_block = host_program->MutableBlock(host_op_sub_id);
|
|
auto* engine_op_sub_block =
|
|
engine_program->AppendBlock(*(op_desc->Block()));
|
|
for (auto* var : host_op_sub_block->AllVars()) {
|
|
auto* engine_var = engine_op_sub_block->Var(var->Name());
|
|
engine_var->Proto()->CopyFrom(*var->Proto());
|
|
}
|
|
for (auto* op : host_op_sub_block->AllOps()) {
|
|
auto* engine_op = engine_op_sub_block->AppendOp();
|
|
engine_op->Proto()->CopyFrom(*op->Proto());
|
|
}
|
|
sub_blocks_map[host_op_sub_id] = engine_block_size;
|
|
append_sub_blocks(host_op_sub_block->AllOps());
|
|
}
|
|
}
|
|
};
|
|
append_sub_blocks(subgraph_ops);
|
|
for (size_t i = 0; i < engine_program->Size(); i++) {
|
|
for (auto* op_desc : engine_program->Block(i).AllOps()) {
|
|
if (op_desc->HasAttr("sub_block")) {
|
|
int32_t id = op_desc->GetBlockAttrId("sub_block");
|
|
op_desc->SetAttr("sub_block", sub_blocks_map[id]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// The modification of pass should be a process of framework::desc
|
|
// (initial) -> proto::desc (flush) -> framework::desc (final).
|
|
// Ir::Graph is limited to changing the main block, so the sub block
|
|
// needs to be processed here.
|
|
void ModifyEngineProgram(Node* merged_node,
|
|
framework::ProgramDesc* host_program,
|
|
framework::ProgramDesc* engine_program,
|
|
const int32_t host_sub_block_id,
|
|
const std::unordered_set<Node*>& io_var_nodes,
|
|
const std::vector<framework::OpDesc*>& subgraph_ops) {
|
|
// 1. Fill the main block of lite program.
|
|
framework::BlockDesc* engine_global_block =
|
|
engine_program->MutableBlock(framework::kRootBlockIndex);
|
|
PrependFeedOps(engine_global_block, IOVarsFilter(merged_node->inputs));
|
|
for (auto* var_node : io_var_nodes) {
|
|
framework::VarDesc* sub_block_var =
|
|
engine_global_block->Var(var_node->Name());
|
|
sub_block_var->Proto()->CopyFrom(*var_node->Var()->Proto());
|
|
}
|
|
for (auto* op_desc : subgraph_ops) {
|
|
auto* sub_block_op = engine_global_block->AppendOp();
|
|
sub_block_op->CopyFrom(*op_desc);
|
|
}
|
|
PrependFetchOps(engine_global_block, IOVarsFilter(merged_node->outputs));
|
|
|
|
// 2. Append sub blocks in the lite program.
|
|
AppendLiteSubBlocks(subgraph_ops, engine_program, host_program,
|
|
host_sub_block_id);
|
|
}
|
|
|
|
void OrganizeProgram(Node* merged_node, framework::ProgramDesc* host_program,
|
|
framework::ProgramDesc* engine_program,
|
|
std::vector<std::string>* repetitive_params) {
|
|
std::vector<framework::ir::Node*>& subgraph = *Agent(merged_node).subgraph();
|
|
PADDLE_ENFORCE_EQ(subgraph.empty(), false,
|
|
platform::errors::NotFound(
|
|
"No subgraph found in lite subgraph pass. Please use "
|
|
"the full model call from Analysis Predictor."));
|
|
|
|
const framework::BlockDesc& host_global_block =
|
|
host_program->Block(framework::kRootBlockIndex);
|
|
framework::BlockDesc* host_sub_block =
|
|
host_program->AppendBlock(host_global_block);
|
|
|
|
string::PrettyLogDetail("--- detect a sub-graph with %d nodes",
|
|
subgraph.size());
|
|
|
|
std::unordered_set<Node*> io_var_nodes = GetRelatedIOVarNodes(subgraph);
|
|
for (const auto* node : io_var_nodes) {
|
|
VLOG(3) << "IO Variable Name: " << node->Name();
|
|
}
|
|
|
|
std::vector<framework::OpDesc*> subgraph_ops;
|
|
for (auto* op_node : subgraph) {
|
|
subgraph_ops.push_back(op_node->Op());
|
|
}
|
|
|
|
ModifyHostProgram(host_program, host_sub_block, io_var_nodes, subgraph_ops);
|
|
ModifyEngineProgram(merged_node, host_program, engine_program,
|
|
host_sub_block->ID(), io_var_nodes, subgraph_ops);
|
|
*repetitive_params = ExtractParameters(io_var_nodes, true);
|
|
for (const auto& param : *repetitive_params) {
|
|
VLOG(3) << "Repetitive param: " << param;
|
|
}
|
|
host_program->Flush();
|
|
engine_program->Flush();
|
|
}
|
|
} // namespace lite
|
|
|
|
void LiteSubgraphPass::SetUpEngine(
|
|
framework::ProgramDesc* program,
|
|
const std::vector<std::string>& repetitive_params,
|
|
const std::string& unique_key, bool dump_model) const {
|
|
inference::lite::EngineConfig config;
|
|
auto* scope = param_scope();
|
|
|
|
// When the pass is started, only the persistent variables of the
|
|
// main block are read. Fluid seems to allow persistence variables
|
|
// in the sub block, but they are controlled by context, so the
|
|
// support is suspended here.
|
|
auto serialize_params = [](std::string* str, framework::Scope* scope,
|
|
const std::vector<std::string>& params) {
|
|
std::ostringstream os;
|
|
platform::CPUDeviceContext ctx;
|
|
for (const auto& param : params) {
|
|
VLOG(3) << "Serialize param: " << param;
|
|
PADDLE_ENFORCE_NOT_NULL(
|
|
scope->FindVar(param),
|
|
platform::errors::NotFound(
|
|
"Block should already have a '%s' variable", param));
|
|
auto* tensor = scope->FindVar(param)->GetMutable<framework::LoDTensor>();
|
|
framework::SerializeToStream(os, *tensor, ctx);
|
|
}
|
|
*str = os.str();
|
|
};
|
|
|
|
bool use_gpu = Get<bool>("use_gpu");
|
|
bool enable_int8 = Get<bool>("enable_int8");
|
|
bool use_xpu = Get<bool>("use_xpu");
|
|
int xpu_l3_workspace_size = Get<int>("xpu_l3_workspace_size");
|
|
|
|
lite_api::TargetType target_type;
|
|
if (use_gpu) {
|
|
target_type = TARGET(kCUDA);
|
|
} else if (use_xpu) {
|
|
target_type = TARGET(kXPU);
|
|
} else {
|
|
target_type = TARGET(kX86);
|
|
}
|
|
|
|
paddle::lite_api::PrecisionType precision_type =
|
|
enable_int8 ? PRECISION(kInt8) : PRECISION(kFloat);
|
|
|
|
serialize_params(&config.param, scope, repetitive_params);
|
|
config.model = program->Proto()->SerializeAsString();
|
|
config.valid_places = {
|
|
// Notice: The ordering here determines the device where the
|
|
// input tensor of the Lite engine is located, and then affects
|
|
// whether tensor sharing is feasible.
|
|
paddle::lite::Place({target_type, precision_type}),
|
|
paddle::lite::Place({target_type, PRECISION(kInt64)}),
|
|
paddle::lite::Place({target_type, PRECISION(kFloat)}),
|
|
paddle::lite::Place({TARGET(kHost), PRECISION(kFloat)}),
|
|
};
|
|
config.xpu_l3_workspace_size = xpu_l3_workspace_size;
|
|
if (dump_model) {
|
|
lite::StrToBinaryFile("./model.bin", config.model);
|
|
lite::StrToBinaryFile("./param.bin", config.param);
|
|
}
|
|
inference::Singleton<inference::lite::EngineManager>::Global().Create(
|
|
unique_key, config);
|
|
}
|
|
|
|
void LiteSubgraphPass::BuildOperator(
|
|
Node* merged_node, framework::ProgramDesc* global_program,
|
|
std::vector<std::string>* repetitive_params) const {
|
|
framework::ProgramDesc engine_program;
|
|
|
|
const std::string id = std::to_string(Get<int>("predictor_id"));
|
|
const std::vector<std::string> input_names =
|
|
lite::IOVarsFilter(merged_node->inputs);
|
|
const std::vector<std::string> output_names =
|
|
lite::IOVarsFilter(merged_node->outputs);
|
|
const std::string unique_key = lite::UniqueKey(input_names, output_names, id);
|
|
|
|
lite::OrganizeProgram(merged_node, global_program, &engine_program,
|
|
repetitive_params);
|
|
SetUpEngine(&engine_program, *repetitive_params, unique_key);
|
|
|
|
auto* op_desc = merged_node->Op();
|
|
op_desc->SetInput("Xs", input_names);
|
|
op_desc->SetOutput("Ys", output_names);
|
|
op_desc->SetType("lite_engine");
|
|
op_desc->SetAttr("engine_key", unique_key);
|
|
op_desc->SetAttr("enable_int8", Get<bool>("enable_int8"));
|
|
op_desc->SetAttr("use_gpu", Get<bool>("use_gpu"));
|
|
op_desc->SetAttr("zero_copy", Get<bool>("zero_copy"));
|
|
}
|
|
|
|
void LiteSubgraphPass::ApplyImpl(framework::ir::Graph* graph) const {
|
|
framework::ir::FusePassBase::Init("lite_subgraph_pass", graph);
|
|
framework::ProgramDesc* global_program =
|
|
Get<framework::ProgramDesc*>("program");
|
|
|
|
auto& lite_ops_filter = Get<std::vector<std::string>>("lite_ops_filter");
|
|
|
|
auto teller = [&lite_ops_filter](const Node* node) {
|
|
if (!node->IsOp() || !node->Op())
|
|
return false;
|
|
else if (node->Op()->Type() == "feed" || node->Op()->Type() == "fetch")
|
|
return false;
|
|
else if (std::find(lite_ops_filter.begin(), lite_ops_filter.end(),
|
|
node->Op()->Type()) != lite_ops_filter.end())
|
|
return false;
|
|
return inference::lite::OpTeller::Global().Tell(node->Op()->Type(),
|
|
*node->Op());
|
|
};
|
|
|
|
SubGraphFuser fuser(graph, teller, 0 /* min_subgraph_size */, "lite_engine");
|
|
fuser();
|
|
|
|
std::vector<std::string> repetitive_params;
|
|
for (auto* node : graph->Nodes()) {
|
|
if (node->IsOp() && !Agent(node).subgraph()->empty()) {
|
|
BuildOperator(node, global_program, &repetitive_params);
|
|
std::unordered_set<const Node*> nodes2remove(
|
|
Agent(node).subgraph()->begin(), Agent(node).subgraph()->end());
|
|
framework::ir::GraphSafeRemoveNodes(graph, nodes2remove);
|
|
}
|
|
}
|
|
|
|
std::unordered_set<const Node*> nodes2remove;
|
|
for (auto* node : graph->Nodes()) {
|
|
if (node->IsOp() && Agent(node).deleted()) {
|
|
nodes2remove.insert(node);
|
|
}
|
|
}
|
|
framework::ir::GraphSafeRemoveNodes(graph, nodes2remove);
|
|
graph->Set(framework::ir::kRepetitiveParamAttr,
|
|
new std::vector<std::string>(repetitive_params));
|
|
}
|
|
|
|
} // namespace analysis
|
|
} // namespace inference
|
|
} // namespace paddle
|
|
|
|
REGISTER_PASS(lite_subgraph_pass,
|
|
paddle::inference::analysis::LiteSubgraphPass);
|