You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
137 lines
5.2 KiB
137 lines
5.2 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <glog/logging.h>
|
|
#include <gtest/gtest.h>
|
|
#include "gflags/gflags.h"
|
|
|
|
#include "paddle/fluid/inference/tests/api/trt_test_helper.h"
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
|
|
void TestDynamic(bool with_dynamic = true) {
|
|
std::string model_dir =
|
|
FLAGS_infer_model + "/conv_bn_swish_split_gelu/conv_bn_swish_split_gelu";
|
|
AnalysisConfig config;
|
|
config.EnableUseGpu(100, 0);
|
|
config.SetModel(model_dir + "/model", model_dir + "/params");
|
|
config.SwitchUseFeedFetchOps(false);
|
|
// Set the input's min, max, opt shape
|
|
|
|
config.EnableTensorRtEngine(1 << 30, 1, 1,
|
|
AnalysisConfig::Precision::kFloat32, false, true);
|
|
if (with_dynamic) {
|
|
std::map<std::string, std::vector<int>> min_input_shape = {
|
|
{"image", {1, 1, 3, 3}}};
|
|
std::map<std::string, std::vector<int>> max_input_shape = {
|
|
{"image", {1, 1, 10, 10}}};
|
|
std::map<std::string, std::vector<int>> opt_input_shape = {
|
|
{"image", {1, 1, 3, 3}}};
|
|
|
|
config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape,
|
|
opt_input_shape);
|
|
}
|
|
auto predictor = CreatePaddlePredictor(config);
|
|
auto input_names = predictor->GetInputNames();
|
|
int channels = 1;
|
|
int height = 3;
|
|
int width = 3;
|
|
int input_num = channels * height * width * 1;
|
|
|
|
float *input = new float[input_num];
|
|
memset(input, 0, input_num * sizeof(float));
|
|
auto input_t = predictor->GetInputTensor(input_names[0]);
|
|
input_t->Reshape({1, channels, height, width});
|
|
input_t->copy_from_cpu(input);
|
|
|
|
ASSERT_TRUE(predictor->ZeroCopyRun());
|
|
|
|
std::vector<float> out_data;
|
|
auto output_names = predictor->GetOutputNames();
|
|
auto output_t = predictor->GetOutputTensor(output_names[0]);
|
|
std::vector<int> output_shape = output_t->shape();
|
|
int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
|
|
std::multiplies<int>());
|
|
out_data.resize(out_num);
|
|
output_t->copy_to_cpu(out_data.data());
|
|
}
|
|
|
|
void TestDynamic2() {
|
|
std::string model_dir =
|
|
FLAGS_infer_model + "/complex_model_dynamic/complex_model_dynamic2";
|
|
AnalysisConfig config;
|
|
config.EnableUseGpu(100, 0);
|
|
config.SetModel(model_dir + "/model", model_dir + "/params");
|
|
config.SwitchUseFeedFetchOps(false);
|
|
// Set the input's min, max, opt shape
|
|
int batch_size = 1;
|
|
std::map<std::string, std::vector<int>> min_input_shape = {
|
|
{"image", {1, 3, 3, 3}}, {"in1", {1, 2, 1, 1}}, {"in2", {1, 2, 1, 1}}};
|
|
std::map<std::string, std::vector<int>> max_input_shape = {
|
|
{"image", {1, 3, 10, 10}}, {"in1", {1, 2, 1, 1}}, {"in2", {1, 2, 1, 1}}};
|
|
std::map<std::string, std::vector<int>> opt_input_shape = {
|
|
{"image", {1, 3, 5, 5}}, {"in1", {1, 2, 1, 1}}, {"in2", {1, 2, 1, 1}}};
|
|
config.EnableTensorRtEngine(1 << 30, batch_size, 0,
|
|
AnalysisConfig::Precision::kFloat32, false, true);
|
|
|
|
config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape,
|
|
opt_input_shape);
|
|
|
|
auto predictor = CreatePaddlePredictor(config);
|
|
int channels = 3;
|
|
int height = 5;
|
|
int width = 5;
|
|
int input_num = channels * height * width * 1;
|
|
|
|
float *input = new float[input_num];
|
|
memset(input, 0, input_num * sizeof(float));
|
|
auto input_names = predictor->GetInputNames();
|
|
auto input_t = predictor->GetInputTensor(input_names[0]);
|
|
input_t->Reshape({batch_size, channels, height, width});
|
|
input_t->copy_from_cpu(input);
|
|
|
|
auto input_t1 = predictor->GetInputTensor(input_names[1]);
|
|
input_t1->Reshape({batch_size, 2, 1, 1});
|
|
std::vector<float> first;
|
|
for (int i = 0; i < batch_size * 2; i++) first.push_back(1.0);
|
|
input_t1->copy_from_cpu(first.data());
|
|
|
|
auto input_t2 = predictor->GetInputTensor(input_names[2]);
|
|
input_t2->Reshape({batch_size, 2, 1, 1});
|
|
input_t2->copy_from_cpu(first.data());
|
|
|
|
ASSERT_TRUE(predictor->ZeroCopyRun());
|
|
|
|
std::vector<float> out_data;
|
|
auto output_names = predictor->GetOutputNames();
|
|
auto output_t = predictor->GetOutputTensor(output_names[0]);
|
|
std::vector<int> output_shape = output_t->shape();
|
|
int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
|
|
std::multiplies<int>());
|
|
out_data.resize(out_num);
|
|
output_t->copy_to_cpu(out_data.data());
|
|
std::vector<float> result = {0.617728, 1.63504, 2.15771, 0.535556};
|
|
for (size_t i = 0; i < out_data.size(); i++) {
|
|
EXPECT_NEAR(result[i], out_data[i], 1e-5);
|
|
}
|
|
}
|
|
|
|
TEST(AnalysisPredictor, trt_dynamic) { TestDynamic(true); }
|
|
TEST(AnalysisPredictor, trt_static) { TestDynamic(false); }
|
|
TEST(AnalysisPredictor, trt_dynamic2) { TestDynamic2(); }
|
|
|
|
} // namespace inference
|
|
} // namespace paddle
|