You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/demo/pyreader.py

101 lines
3.2 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy
import six
import paddle
import paddle.dataset.mnist as mnist
import paddle.fluid as fluid
def network(is_train):
reader = fluid.layers.py_reader(
capacity=10,
shapes=((-1, 784), (-1, 1)),
dtypes=('float32', 'int64'),
name="train_reader" if is_train else "test_reader",
use_double_buffer=True)
img, label = fluid.layers.read_file(reader)
hidden = img
for i in six.moves.xrange(2):
hidden = fluid.layers.fc(input=hidden, size=100, act='tanh')
hidden = fluid.layers.dropout(
hidden, dropout_prob=0.5, is_test=not is_train)
prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
return fluid.layers.mean(loss), reader
def main():
train_prog = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(train_prog, startup_prog):
with fluid.unique_name.guard():
loss, train_reader = network(True)
adam = fluid.optimizer.Adam(learning_rate=0.01)
adam.minimize(loss)
test_prog = fluid.Program()
test_startup = fluid.Program()
with fluid.program_guard(test_prog, test_startup):
with fluid.unique_name.guard():
test_loss, test_reader = network(False)
use_cuda = fluid.core.is_compiled_with_cuda()
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
fluid.Executor(place).run(startup_prog)
fluid.Executor(place).run(test_startup)
trainer = fluid.ParallelExecutor(
use_cuda=use_cuda, loss_name=loss.name, main_program=train_prog)
tester = fluid.ParallelExecutor(
use_cuda=use_cuda, share_vars_from=trainer, main_program=test_prog)
train_reader.decorate_paddle_reader(
paddle.reader.shuffle(
paddle.batch(mnist.train(), 512), buf_size=8192))
test_reader.decorate_paddle_reader(paddle.batch(mnist.test(), 512))
for epoch_id in six.moves.xrange(10):
train_reader.start()
try:
while True:
print 'train_loss', numpy.array(
trainer.run(fetch_list=[loss.name]))
except fluid.core.EOFException:
print 'End of epoch', epoch_id
train_reader.reset()
test_reader.start()
try:
while True:
print 'test loss', numpy.array(
tester.run(fetch_list=[test_loss.name]))
except fluid.core.EOFException:
print 'End of testing'
test_reader.reset()
if __name__ == '__main__':
main()