You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/benchmark/paddle/image/googlenet.py

227 lines
6.3 KiB

#!/usr/bin/env python
from paddle.trainer_config_helpers import *
height = 224
width = 224
num_class = 1000
batch_size = get_config_arg('batch_size', int, 128)
args = {'height': height, 'width': width, 'color': True, 'num_class': num_class}
define_py_data_sources2(
"train.list", None, module="provider", obj="process", args=args)
settings(
batch_size=batch_size,
learning_rate=0.01 / batch_size,
learning_method=MomentumOptimizer(0.9),
regularization=L2Regularization(0.0005 * batch_size))
def inception2(name, input, channels, \
filter1,
filter3R, filter3,
filter5R, filter5,
proj):
conv1 = name + '_1'
conv3r = name + '_3r'
conv3 = name + '_3'
conv5r = name + '_5r'
conv5 = name + '_5'
maxpool = name + '_max'
convproj = name + '_proj'
cov1 = img_conv_layer(
name=conv1,
input=input,
filter_size=1,
num_channels=channels,
num_filters=filter1,
stride=1,
padding=0)
cov3r = img_conv_layer(
name=conv3r,
input=input,
filter_size=1,
num_channels=channels,
num_filters=filter3R,
stride=1,
padding=0)
cov3 = img_conv_layer(
name=conv3,
input=cov3r,
filter_size=3,
num_filters=filter3,
stride=1,
padding=1)
cov5r = img_conv_layer(
name=conv5r,
input=input,
filter_size=1,
num_channels=channels,
num_filters=filter5R,
stride=1,
padding=0)
cov5 = img_conv_layer(
name=conv5,
input=cov5r,
filter_size=5,
num_filters=filter5,
stride=1,
padding=2)
pool1 = img_pool_layer(
name=maxpool,
input=input,
pool_size=3,
num_channels=channels,
stride=1,
padding=1)
covprj = img_conv_layer(
name=convproj,
input=pool1,
filter_size=1,
num_filters=proj,
stride=1,
padding=0)
cat = concat_layer(name=name, input=[cov1, cov3, cov5, covprj])
return cat
def inception(name, input, channels, \
filter1,
filter3R, filter3,
filter5R, filter5,
proj):
cov1 = conv_projection(
input=input,
filter_size=1,
num_channels=channels,
num_filters=filter1,
stride=1,
padding=0)
cov3r = img_conv_layer(
name=name + '_3r',
input=input,
filter_size=1,
num_channels=channels,
num_filters=filter3R,
stride=1,
padding=0)
cov3 = conv_projection(
input=cov3r, filter_size=3, num_filters=filter3, stride=1, padding=1)
cov5r = img_conv_layer(
name=name + '_5r',
input=input,
filter_size=1,
num_channels=channels,
num_filters=filter5R,
stride=1,
padding=0)
cov5 = conv_projection(
input=cov5r, filter_size=5, num_filters=filter5, stride=1, padding=2)
pool1 = img_pool_layer(
name=name + '_max',
input=input,
pool_size=3,
num_channels=channels,
stride=1,
padding=1)
covprj = conv_projection(
input=pool1, filter_size=1, num_filters=proj, stride=1, padding=0)
cat = concat_layer(
name=name,
input=[cov1, cov3, cov5, covprj],
bias_attr=True,
act=ReluActivation())
return cat
lab = data_layer(name="label", size=1000)
data = data_layer(name="input", size=3 * height * width)
# stage 1
conv1 = img_conv_layer(
name="conv1",
input=data,
filter_size=7,
num_channels=3,
num_filters=64,
stride=2,
padding=3)
pool1 = img_pool_layer(
name="pool1", input=conv1, pool_size=3, num_channels=64, stride=2)
# stage 2
conv2_1 = img_conv_layer(
name="conv2_1",
input=pool1,
filter_size=1,
num_filters=64,
stride=1,
padding=0)
conv2_2 = img_conv_layer(
name="conv2_2",
input=conv2_1,
filter_size=3,
num_filters=192,
stride=1,
padding=1)
pool2 = img_pool_layer(
name="pool2", input=conv2_2, pool_size=3, num_channels=192, stride=2)
# stage 3
ince3a = inception("ince3a", pool2, 192, 64, 96, 128, 16, 32, 32)
ince3b = inception("ince3b", ince3a, 256, 128, 128, 192, 32, 96, 64)
pool3 = img_pool_layer(
name="pool3", input=ince3b, num_channels=480, pool_size=3, stride=2)
# stage 4
ince4a = inception("ince4a", pool3, 480, 192, 96, 208, 16, 48, 64)
ince4b = inception("ince4b", ince4a, 512, 160, 112, 224, 24, 64, 64)
ince4c = inception("ince4c", ince4b, 512, 128, 128, 256, 24, 64, 64)
ince4d = inception("ince4d", ince4c, 512, 112, 144, 288, 32, 64, 64)
ince4e = inception("ince4e", ince4d, 528, 256, 160, 320, 32, 128, 128)
pool4 = img_pool_layer(
name="pool4", input=ince4e, num_channels=832, pool_size=3, stride=2)
# stage 5
ince5a = inception("ince5a", pool4, 832, 256, 160, 320, 32, 128, 128)
ince5b = inception("ince5b", ince5a, 832, 384, 192, 384, 48, 128, 128)
pool5 = img_pool_layer(
name="pool5",
input=ince5b,
num_channels=1024,
pool_size=7,
stride=7,
pool_type=AvgPooling())
# We remove loss1 and loss2 for all system when testing benchmark
# output 1
# pool_o1 = img_pool_layer(name="pool_o1", input=ince4a, num_channels=512, pool_size=5, stride=3, pool_type=AvgPooling())
# conv_o1 = img_conv_layer(name="conv_o1", input=pool_o1, filter_size=1, num_filters=128, stride=1, padding=0)
# fc_o1 = fc_layer(name="fc_o1", input=conv_o1, size=1024, layer_attr=ExtraAttr(drop_rate=0.7), act=ReluActivation())
# out1 = fc_layer(name="output1", input=fc_o1, size=1000, act=SoftmaxActivation())
# loss1 = cross_entropy(name='loss1', input=out1, label=lab, coeff=0.3)
# output 2
#pool_o2 = img_pool_layer(name="pool_o2", input=ince4d, num_channels=528, pool_size=5, stride=3, pool_type=AvgPooling())
#conv_o2 = img_conv_layer(name="conv_o2", input=pool_o2, filter_size=1, num_filters=128, stride=1, padding=0)
#fc_o2 = fc_layer(name="fc_o2", input=conv_o2, size=1024, layer_attr=ExtraAttr(drop_rate=0.7), act=ReluActivation())
#out2 = fc_layer(name="output2", input=fc_o2, size=1000, act=SoftmaxActivation())
#loss2 = cross_entropy(name='loss2', input=out2, label=lab, coeff=0.3)
# output 3
dropout = dropout_layer(name="dropout", input=pool5, dropout_rate=0.4)
out3 = fc_layer(
name="output3", input=dropout, size=1000, act=SoftmaxActivation())
loss3 = cross_entropy(name='loss3', input=out3, label=lab)
outputs(loss3)