You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/rank_attention_op.cu

216 lines
8.8 KiB

/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <cublas.h>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/rank_attention.cu.h"
#include "paddle/fluid/operators/rank_attention_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/gpu_info.h"
namespace paddle {
namespace operators {
using framework::Tensor;
template <typename DeviceContext, typename T>
class RankAttentionCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *X = ctx.Input<Tensor>("X");
auto *rank_offset = ctx.Input<Tensor>("RankOffset");
auto *param = ctx.Input<Tensor>("RankParam");
int max_rank = ctx.Attr<int>("MaxRank");
auto *Out = ctx.Output<Tensor>("Out");
// check dims
auto x_dims = X->dims();
auto ins_num = x_dims[0];
auto x_fea_dim = x_dims[1];
auto para_dims = param->dims();
auto para_row = para_dims[0];
auto para_col = para_dims[1];
auto rank_offset_dims = rank_offset->dims();
PADDLE_ENFORCE_EQ(
rank_offset_dims[0], ins_num,
platform::errors::InvalidArgument("Input(RankOffset) has wrong rows."));
PADDLE_ENFORCE_EQ((rank_offset_dims[1] - 1) / 2, max_rank,
platform::errors::InvalidArgument(
"Input(RankOffset) has wrong columns."));
PADDLE_ENFORCE_EQ(
max_rank * max_rank * x_fea_dim, para_row,
platform::errors::InvalidArgument("Input(RankParam) has wrong rows."));
int block_matrix_row = max_rank * x_fea_dim;
auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
auto stream = ctx.cuda_device_context().stream();
int device_id = platform::GetCurrentDeviceId();
T *param_help_data;
auto param_help_size = ins_num * block_matrix_row * para_col * sizeof(T);
platform::RecordedCudaMalloc(reinterpret_cast<void **>(&param_help_data),
param_help_size, device_id);
platform::GpuMemsetAsync(param_help_data, 0, param_help_size, stream);
T *input_help_data;
auto input_help_size = ins_num * block_matrix_row * sizeof(T);
platform::RecordedCudaMalloc(reinterpret_cast<void **>(&input_help_data),
input_help_size, device_id);
platform::GpuMemsetAsync(input_help_data, 0, input_help_size, stream);
T *ins_rank_data;
auto ins_rank_size = ins_num * sizeof(T);
platform::RecordedCudaMalloc(reinterpret_cast<void **>(&ins_rank_data),
ins_rank_size, device_id);
platform::GpuMemsetAsync(ins_rank_data, -1, ins_rank_size, stream);
Out->mutable_data<T>(ctx.GetPlace());
// initialize
auto out_eigen = framework::EigenVector<T>::Flatten(*Out);
auto &place = *ctx.template device_context<platform::CUDADeviceContext>()
.eigen_device();
out_eigen.device(place) = out_eigen.constant(static_cast<T>(0));
// get data ptr
T *out_data = Out->data<T>();
expand_rank_attention_input(
ctx.cuda_device_context().stream(), X->data<T>(), ins_num, x_fea_dim,
input_help_data, ins_num, block_matrix_row, rank_offset->data<int>(),
rank_offset_dims[0], rank_offset_dims[1], ins_rank_data, max_rank);
expand_rank_attention_param(
ctx.cuda_device_context().stream(), X->data<T>(), ins_num, x_fea_dim,
rank_offset->data<int>(), rank_offset_dims[0], rank_offset_dims[1],
param->data<T>(), para_row, para_col, param_help_data,
ins_num * block_matrix_row, para_col, max_rank);
CBLAS_TRANSPOSE transA = CblasNoTrans;
CBLAS_TRANSPOSE transB = CblasNoTrans;
T alpha = 1;
T beta = 0;
int64_t strideA = block_matrix_row;
int64_t strideB = block_matrix_row * para_col;
auto blas = math::GetBlas<platform::CUDADeviceContext, T>(dev_ctx);
blas.BatchedGEMM(transA, transB, 1, para_col, block_matrix_row, alpha,
input_help_data, param_help_data, beta, out_data, ins_num,
strideA, strideB);
platform::RecordedCudaFree(param_help_data, param_help_size, device_id);
platform::RecordedCudaFree(input_help_data, input_help_size, device_id);
platform::RecordedCudaFree(ins_rank_data, ins_rank_size, device_id);
}
};
template <typename DeviceContext, typename T>
class RankAttentionGradOpCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *X = ctx.Input<Tensor>("X");
auto *rank_offset = ctx.Input<Tensor>("RankOffset");
auto *param = ctx.Input<Tensor>("RankParam");
auto *dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto *drank_para = ctx.Output<Tensor>(framework::GradVarName("RankParam"));
// get dim
auto x_dims = X->dims();
auto ins_num = x_dims[0];
auto x_fea_dim = x_dims[1];
auto para_dims = param->dims();
auto para_row = para_dims[0];
auto para_col = para_dims[1];
auto rank_offset_dims = rank_offset->dims();
auto max_rank = (rank_offset_dims[1] - 1) / 2;
int block_matrix_row = max_rank * x_fea_dim;
auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
auto &place = *ctx.template device_context<platform::CUDADeviceContext>()
.eigen_device();
// initialize out grad
drank_para->mutable_data<T>(ctx.GetPlace());
auto drank_para_eigen = framework::EigenVector<T>::Flatten(*drank_para);
drank_para_eigen.device(place) =
drank_para_eigen.constant(static_cast<T>(0));
auto stream = ctx.cuda_device_context().stream();
int device_id = platform::GetCurrentDeviceId();
T *param_grad_data;
auto param_grad_size = ins_num * block_matrix_row * para_col * sizeof(T);
platform::RecordedCudaMalloc(reinterpret_cast<void **>(&param_grad_data),
param_grad_size, device_id);
platform::GpuMemsetAsync(param_grad_data, 0, param_grad_size, stream);
T *input_help_data;
auto input_help_size = ins_num * block_matrix_row * sizeof(T);
platform::RecordedCudaMalloc(reinterpret_cast<void **>(&input_help_data),
input_help_size, device_id);
platform::GpuMemsetAsync(input_help_data, 0, input_help_size, stream);
T *ins_rank_data;
auto ins_rank_size = ins_num * sizeof(T);
platform::RecordedCudaMalloc(reinterpret_cast<void **>(&ins_rank_data),
ins_rank_size, device_id);
platform::GpuMemsetAsync(ins_rank_data, -1, ins_rank_size, stream);
// expand input
expand_rank_attention_input(
ctx.cuda_device_context().stream(), X->data<T>(), ins_num, x_fea_dim,
input_help_data, ins_num, block_matrix_row, rank_offset->data<int>(),
rank_offset_dims[0], rank_offset_dims[1], ins_rank_data, max_rank);
auto blas = math::GetBlas<platform::CUDADeviceContext, T>(dev_ctx);
T alpha = 1;
T beta = 0;
// get param_grad
CBLAS_TRANSPOSE transA = CblasTrans;
CBLAS_TRANSPOSE transB = CblasNoTrans;
int64_t strideA = block_matrix_row;
int64_t strideB = para_col;
blas.BatchedGEMM(transA, transB, block_matrix_row, para_col, 1, alpha,
input_help_data, dout->data<T>(), beta, param_grad_data,
ins_num, strideA, strideB);
// merge param_grad to get drank_para
merge_rank_attention_param_grad(
ctx.cuda_device_context().stream(), param_grad_data,
ins_num * block_matrix_row, para_col, drank_para->data<T>(), para_row,
para_col, ins_rank_data, ins_num, max_rank, x_fea_dim);
platform::RecordedCudaFree(param_grad_data, param_grad_size, device_id);
platform::RecordedCudaFree(input_help_data, input_help_size, device_id);
platform::RecordedCudaFree(ins_rank_data, ins_rank_size, device_id);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
using GPUCtx = paddle::platform::CUDADeviceContext;
REGISTER_OP_CUDA_KERNEL(rank_attention,
ops::RankAttentionCUDAKernel<GPUCtx, float>,
ops::RankAttentionCUDAKernel<GPUCtx, double>);
REGISTER_OP_CUDA_KERNEL(rank_attention_grad,
ops::RankAttentionGradOpCUDAKernel<GPUCtx, float>,
ops::RankAttentionGradOpCUDAKernel<GPUCtx, double>);