You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/demo/gan/gan_trainer_image.py

302 lines
12 KiB

# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import itertools
import random
import numpy
import cPickle
import sys,os,gc
from PIL import Image
from paddle.trainer.config_parser import parse_config
from paddle.trainer.config_parser import logger
import py_paddle.swig_paddle as api
def CHECK_EQ(a, b):
assert a == b, "a=%s, b=%s" % (a, b)
def copy_shared_parameters(src, dst):
src_params = [src.getParameter(i)
for i in xrange(src.getParameterSize())]
src_params = dict([(p.getName(), p) for p in src_params])
for i in xrange(dst.getParameterSize()):
dst_param = dst.getParameter(i)
src_param = src_params.get(dst_param.getName(), None)
if src_param is None:
continue
src_value = src_param.getBuf(api.PARAMETER_VALUE)
dst_value = dst_param.getBuf(api.PARAMETER_VALUE)
CHECK_EQ(len(src_value), len(dst_value))
dst_value.copyFrom(src_value)
dst_param.setValueUpdated()
def print_parameters(src):
src_params = [src.getParameter(i)
for i in xrange(src.getParameterSize())]
print "***************"
for p in src_params:
print "Name is %s" % p.getName()
print "value is %s \n" % p.getBuf(api.PARAMETER_VALUE).copyToNumpyArray()
def load_mnist_data(imageFile):
f = open(imageFile, "rb")
f.read(16)
# Define number of samples for train/test
if "train" in imageFile:
#n = 60000
n = 60000
else:
n = 10000
data = numpy.zeros((n, 28*28), dtype = "float32")
for i in range(n):
pixels = []
for j in range(28 * 28):
pixels.append(float(ord(f.read(1))) / 255.0 * 2.0 - 1.0)
data[i, :] = pixels
f.close()
return data
def load_cifar_data(cifar_path):
batch_size = 10000
data = numpy.zeros((5*batch_size, 32*32*3), dtype = "float32")
for i in range(1, 6):
file = cifar_path + "/data_batch_" + str(i)
fo = open(file, 'rb')
dict = cPickle.load(fo)
fo.close()
data[(i - 1)*batch_size:(i*batch_size), :] = dict["data"]
data = data / 255.0 * 2.0 - 1.0
return data
def merge(images, size):
if images.shape[1] == 28*28:
h, w, c = 28, 28, 1
else:
h, w, c = 32, 32, 3
img = numpy.zeros((h * size[0], w * size[1], c))
for idx in xrange(size[0] * size[1]):
i = idx % size[1]
j = idx // size[1]
#img[j*h:j*h+h, i*w:i*w+w, :] = (images[idx, :].reshape((h, w, c), order="F") + 1.0) / 2.0 * 255.0
img[j*h:j*h+h, i*w:i*w+w, :] = \
((images[idx, :].reshape((h, w, c), order="F").transpose(1, 0, 2) + 1.0) / 2.0 * 255.0)
return img.astype('uint8')
def saveImages(images, path):
merged_img = merge(images, [8, 8])
if merged_img.shape[2] == 1:
im = Image.fromarray(numpy.squeeze(merged_img)).convert('RGB')
else:
im = Image.fromarray(merged_img, mode="RGB")
im.save(path)
def get_real_samples(batch_size, data_np):
return data_np[numpy.random.choice(data_np.shape[0], batch_size,
replace=False),:]
def get_noise(batch_size, noise_dim):
return numpy.random.normal(size=(batch_size, noise_dim)).astype('float32')
def get_sample_noise(batch_size, sample_dim):
return numpy.random.normal(size=(batch_size, sample_dim),
scale=0.01).astype('float32')
def get_fake_samples(generator_machine, batch_size, noise):
gen_inputs = api.Arguments.createArguments(1)
gen_inputs.setSlotValue(0, api.Matrix.createGpuDenseFromNumpy(noise))
gen_outputs = api.Arguments.createArguments(0)
generator_machine.forward(gen_inputs, gen_outputs, api.PASS_TEST)
fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat()
return fake_samples
def get_training_loss(training_machine, inputs):
outputs = api.Arguments.createArguments(0)
training_machine.forward(inputs, outputs, api.PASS_TEST)
loss = outputs.getSlotValue(0).copyToNumpyMat()
return numpy.mean(loss)
def prepare_discriminator_data_batch_pos(batch_size, data_np, sample_noise):
real_samples = get_real_samples(batch_size, data_np)
labels = numpy.ones(batch_size, dtype='int32')
inputs = api.Arguments.createArguments(3)
inputs.setSlotValue(0, api.Matrix.createGpuDenseFromNumpy(real_samples))
inputs.setSlotValue(1, api.Matrix.createGpuDenseFromNumpy(sample_noise))
inputs.setSlotIds(2, api.IVector.createGpuVectorFromNumpy(labels))
return inputs
def prepare_discriminator_data_batch_neg(generator_machine, batch_size, noise,
sample_noise):
fake_samples = get_fake_samples(generator_machine, batch_size, noise)
#print fake_samples.shape
labels = numpy.zeros(batch_size, dtype='int32')
inputs = api.Arguments.createArguments(3)
inputs.setSlotValue(0, api.Matrix.createGpuDenseFromNumpy(fake_samples))
inputs.setSlotValue(1, api.Matrix.createGpuDenseFromNumpy(sample_noise))
inputs.setSlotIds(2, api.IVector.createGpuVectorFromNumpy(labels))
return inputs
def prepare_generator_data_batch(batch_size, noise, sample_noise):
label = numpy.ones(batch_size, dtype='int32')
#label = numpy.zeros(batch_size, dtype='int32')
inputs = api.Arguments.createArguments(3)
inputs.setSlotValue(0, api.Matrix.createGpuDenseFromNumpy(noise))
inputs.setSlotValue(1, api.Matrix.createGpuDenseFromNumpy(sample_noise))
inputs.setSlotIds(2, api.IVector.createGpuVectorFromNumpy(label))
return inputs
def find(iterable, cond):
for item in iterable:
if cond(item):
return item
return None
def get_layer_size(model_conf, layer_name):
layer_conf = find(model_conf.layers, lambda x: x.name == layer_name)
assert layer_conf is not None, "Cannot find '%s' layer" % layer_name
return layer_conf.size
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-d", "--dataSource", help="mnist or cifar")
parser.add_argument("--useGpu", default="1",
help="1 means use gpu for training")
parser.add_argument("--gpuId", default="0",
help="the gpu_id parameter")
args = parser.parse_args()
dataSource = args.dataSource
useGpu = args.useGpu
assert dataSource in ["mnist", "cifar"]
assert useGpu in ["0", "1"]
api.initPaddle('--use_gpu=' + useGpu, '--dot_period=10', '--log_period=100',
'--gpu_id=' + args.gpuId)
gen_conf = parse_config("gan_conf_image.py", "mode=generator_training,data=" + dataSource)
dis_conf = parse_config("gan_conf_image.py", "mode=discriminator_training,data=" + dataSource)
generator_conf = parse_config("gan_conf_image.py", "mode=generator,data=" + dataSource)
batch_size = dis_conf.opt_config.batch_size
noise_dim = get_layer_size(gen_conf.model_config, "noise")
sample_dim = get_layer_size(dis_conf.model_config, "sample")
if dataSource == "mnist":
data_np = load_mnist_data("./data/raw_data/train-images-idx3-ubyte")
else:
data_np = load_cifar_data("./data/cifar-10-batches-py/")
if not os.path.exists("./%s_samples/" % dataSource):
os.makedirs("./%s_samples/" % dataSource)
# this create a gradient machine for discriminator
dis_training_machine = api.GradientMachine.createFromConfigProto(
dis_conf.model_config)
gen_training_machine = api.GradientMachine.createFromConfigProto(
gen_conf.model_config)
# generator_machine is used to generate data only, which is used for
# training discrinator
logger.info(str(generator_conf.model_config))
generator_machine = api.GradientMachine.createFromConfigProto(
generator_conf.model_config)
dis_trainer = api.Trainer.create(
dis_conf, dis_training_machine)
gen_trainer = api.Trainer.create(
gen_conf, gen_training_machine)
dis_trainer.startTrain()
gen_trainer.startTrain()
copy_shared_parameters(gen_training_machine, dis_training_machine)
copy_shared_parameters(gen_training_machine, generator_machine)
curr_train = "dis"
curr_strike = 0
MAX_strike = 10
for train_pass in xrange(100):
dis_trainer.startTrainPass()
gen_trainer.startTrainPass()
for i in xrange(1000):
# data_batch_dis = prepare_discriminator_data_batch(
# generator_machine, batch_size, noise_dim, sample_dim)
# dis_loss = get_training_loss(dis_training_machine, data_batch_dis)
noise = get_noise(batch_size, noise_dim)
sample_noise = get_sample_noise(batch_size, sample_dim)
data_batch_dis_pos = prepare_discriminator_data_batch_pos(
batch_size, data_np, sample_noise)
dis_loss_pos = get_training_loss(dis_training_machine, data_batch_dis_pos)
sample_noise = get_sample_noise(batch_size, sample_dim)
data_batch_dis_neg = prepare_discriminator_data_batch_neg(
generator_machine, batch_size, noise, sample_noise)
dis_loss_neg = get_training_loss(dis_training_machine, data_batch_dis_neg)
dis_loss = (dis_loss_pos + dis_loss_neg) / 2.0
data_batch_gen = prepare_generator_data_batch(
batch_size, noise, sample_noise)
gen_loss = get_training_loss(gen_training_machine, data_batch_gen)
if i % 100 == 0:
print "d_pos_loss is %s d_neg_loss is %s" % (dis_loss_pos, dis_loss_neg)
print "d_loss is %s g_loss is %s" % (dis_loss, gen_loss)
if (not (curr_train == "dis" and curr_strike == MAX_strike)) and ((curr_train == "gen" and curr_strike == MAX_strike) or dis_loss_neg > gen_loss):
if curr_train == "dis":
curr_strike += 1
else:
curr_train = "dis"
curr_strike = 1
dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_neg)
dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_pos)
# dis_loss = numpy.mean(dis_trainer.getForwardOutput()[0]["value"])
# print "getForwardOutput loss is %s" % dis_loss
copy_shared_parameters(dis_training_machine, gen_training_machine)
else:
if curr_train == "gen":
curr_strike += 1
else:
curr_train = "gen"
curr_strike = 1
gen_trainer.trainOneDataBatch(batch_size, data_batch_gen)
copy_shared_parameters(gen_training_machine, dis_training_machine)
copy_shared_parameters(gen_training_machine, generator_machine)
dis_trainer.finishTrainPass()
gen_trainer.finishTrainPass()
fake_samples = get_fake_samples(generator_machine, batch_size, noise)
saveImages(fake_samples, "./%s_samples/train_pass%s.png" % (dataSource, train_pass))
dis_trainer.finishTrain()
gen_trainer.finishTrain()
if __name__ == '__main__':
main()