You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/gserver/layers/ContextProjection.cpp

179 lines
6.9 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "ContextProjection.h"
#include "paddle/utils/Stat.h"
namespace paddle {
REGISTER_PROJECTION(context, ContextProjection);
ContextProjection::ContextProjection(const ProjectionConfig& config,
ParameterPtr parameter,
bool useGpu)
: Projection(config, parameter, useGpu) {
CHECK(config.has_context_start());
CHECK(config.has_context_length());
if (config.context_start() == 0 && config.context_length() == 1) {
config_.set_trainable_padding(false);
}
if (config_.trainable_padding()) {
CHECK(parameter);
beginPad_ = std::max(0, -config.context_start());
endPad_ = std::max(0, config.context_start() + config.context_length() - 1);
size_t totalPad = beginPad_ + endPad_;
size_t inputDim = parameter->getSize() / totalPad;
CHECK_EQ(config.input_size(), inputDim);
CHECK_EQ(inputDim * totalPad, parameter->getSize());
weight_.reset(new Weight(totalPad, inputDim, parameter));
}
// init forward_ and backward_ functions
init();
}
bool ContextProjection::init() {
size_t context_length = config_.context_length();
int context_start = config_.context_start();
bool is_padding = config_.trainable_padding();
size_t total_pad = is_padding ? beginPad_ + endPad_ : 0;
createFunction(forward_,
"ContextProjectionForward",
FuncConfig()
.set("context_length", context_length)
.set("context_start", context_start)
.set("begin_pad", beginPad_));
createFunction(backward_,
"ContextProjectionBackward",
FuncConfig()
.set("context_length", context_length)
.set("context_start", context_start)
.set("begin_pad", beginPad_)
.set("is_padding", is_padding)
.set("total_pad", total_pad));
return true;
}
void ContextProjection::resetState() {
CHECK_LE(config_.context_start() + config_.context_length(), 1)
<< "state is not allowed for future context";
if (config_.context_start() >= 0) return;
Matrix::resizeOrCreate(state_,
-config_.context_start(),
config_.input_size(),
false, // trans
useGpu_);
Matrix::resizeOrCreate(state2_,
-config_.context_start(),
config_.input_size(),
false, // trans
useGpu_);
if (config_.trainable_padding()) {
state_->assign(*weight_->getW()->subMatrix(0, -config_.context_start()));
} else {
state_->zeroMem();
}
}
void ContextProjection::setState(LayerStatePtr state) {
CHECK(state->value.size() == 1)
<< "one matrix is expected for ContextProjection state";
state_->copyFrom(*(state->value[0]));
}
LayerStatePtr ContextProjection::getState() {
if (state_ == nullptr) {
return nullptr;
}
LayerStatePtr res = std::make_shared<LayerState>();
res->value.push_back(state_->clone(0, 0, false));
res->value[0]->copyFrom(*state_);
return res;
}
void ContextProjection::forward() {
CHECK(in_->value && out_->value);
CHECK(in_->sequenceStartPositions);
size_t input_dim = in_->value->getWidth();
size_t dim = out_->value->getWidth();
CHECK_EQ(dim, input_dim * config_.context_length());
size_t batch_size = in_->value->getHeight();
CHECK_EQ(forward_.size(), 1) << "Only one forward function here";
REGISTER_TIMER_INFO("ContextProjectionForward", getName().c_str());
bool is_padding = config_.trainable_padding();
/// first use state_, otherwise use weight_(padding false === w nullptr)
auto w_ptr =
state_ ? state_.get() : is_padding ? weight_->getW().get() : nullptr;
auto start_pos = in_->sequenceStartPositions;
forward_[0]->calc({Tensor(in_->value->getData(), Dims{batch_size, input_dim}),
Tensor(w_ptr ? w_ptr->getData() : nullptr,
Dims{w_ptr ? w_ptr->getHeight() : 0, input_dim}),
Tensor(reinterpret_cast<real*>(
const_cast<int*>(start_pos->getData(useGpu_))),
Dims{start_pos->getSize()})},
{Tensor(out_->value->getData(), Dims{batch_size, dim})},
{});
if (state_ && config_.context_start() < 0) {
CHECK_EQ(1, in_->getNumSequences());
const int* starts = in_->sequenceStartPositions->getData(false);
int length = starts[1] - starts[0];
if (-config_.context_start() <= length) {
MatrixPtr sub = in_->value->subMatrix(starts[1] + config_.context_start(),
-config_.context_start());
state_->copyFrom(*sub);
} else {
int prevLength = -config_.context_start() - length;
state2_->subMatrix(0, prevLength)
->copyFrom(*state_->subMatrix(length, prevLength));
state2_->subMatrix(prevLength, length)
->copyFrom(*in_->value->subMatrix(starts[0], length));
std::swap(state_, state2_);
}
}
}
void ContextProjection::backward(const UpdateCallback& callback) {
CHECK(in_->value && out_->value && out_->grad);
size_t input_dim = in_->value->getWidth();
size_t dim = out_->value->getWidth();
CHECK_EQ(dim, input_dim * config_.context_length());
size_t batch_size = in_->value->getHeight();
CHECK_EQ(batch_size, out_->value->getHeight());
CHECK_EQ(backward_.size(), 1) << "Only one backward function here";
REGISTER_TIMER_INFO("ContextProjectionBackward", getName().c_str());
bool is_padding = config_.trainable_padding();
auto start_pos = in_->sequenceStartPositions;
auto w_ptr = is_padding ? weight_->getWGrad() : nullptr;
backward_[0]->calc({Tensor(in_->grad ? in_->grad->getData() : nullptr,
Dims{batch_size, input_dim}),
Tensor(w_ptr ? w_ptr->getData() : nullptr,
Dims{w_ptr ? w_ptr->getHeight() : 0, input_dim}),
Tensor(reinterpret_cast<real*>(
const_cast<int*>(start_pos->getData(useGpu_))),
Dims{start_pos->getSize()})},
{Tensor(out_->grad->getData(), Dims{batch_size, dim})},
{});
if (config_.trainable_padding()) {
weight_->getParameterPtr()->incUpdate(callback);
}
}
} // namespace paddle