You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
106 lines
2.8 KiB
106 lines
2.8 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "Layer.h"
|
|
#include "paddle/math/Matrix.h"
|
|
#include "paddle/utils/Logging.h"
|
|
#include "paddle/utils/Stat.h"
|
|
|
|
namespace paddle {
|
|
|
|
/**
|
|
* A layer for each row of a matrix, multiplying with a element of a vector,
|
|
* which is used in NEURAL TURING MACHINE.
|
|
* \f[
|
|
* y.row[i] = w[i] * x.row[i]
|
|
* \f]
|
|
* where \f$x\f$ is (batchSize x dataDim) input, \f$w\f$ is
|
|
* (batchSize x 1) weight vector, and \f$y\f$ is (batchSize x dataDim) output.
|
|
*
|
|
* The config file api is scaling_layer.
|
|
*/
|
|
|
|
class ScalingLayer : public Layer {
|
|
public:
|
|
explicit ScalingLayer(const LayerConfig& config) : Layer(config) {}
|
|
|
|
~ScalingLayer() {}
|
|
|
|
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
|
|
|
|
void forward(PassType passType);
|
|
void backward(const UpdateCallback& callback = nullptr);
|
|
};
|
|
|
|
REGISTER_LAYER(scaling, ScalingLayer);
|
|
|
|
bool ScalingLayer::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
Layer::init(layerMap, parameterMap);
|
|
|
|
CHECK_EQ(inputLayers_.size(), 2U);
|
|
|
|
return true;
|
|
}
|
|
|
|
void ScalingLayer::forward(PassType passType) {
|
|
Layer::forward(passType);
|
|
|
|
MatrixPtr weightV = getInputValue(0);
|
|
MatrixPtr inV1 = getInputValue(1);
|
|
|
|
size_t batchSize = inV1->getHeight();
|
|
size_t dataDim = inV1->getWidth();
|
|
|
|
CHECK_EQ(dataDim, getSize());
|
|
CHECK_EQ(weightV->getWidth(), 1U);
|
|
CHECK_EQ(weightV->getHeight(), batchSize);
|
|
|
|
{
|
|
REGISTER_TIMER_INFO("FwResetTimer", getName().c_str());
|
|
resetOutput(batchSize, dataDim);
|
|
}
|
|
|
|
MatrixPtr outV = getOutputValue();
|
|
{
|
|
REGISTER_TIMER_INFO("FwScalingTimer", getName().c_str());
|
|
// outV += inV1 * weight
|
|
outV->addRowScale(0, *inV1, *weightV);
|
|
}
|
|
}
|
|
|
|
void ScalingLayer::backward(const UpdateCallback& callback) {
|
|
MatrixPtr weightV = getInputValue(0);
|
|
MatrixPtr inV1 = getInputValue(1);
|
|
MatrixPtr inG0 = getInputGrad(0);
|
|
MatrixPtr inG1 = getInputGrad(1);
|
|
MatrixPtr outG = getOutputGrad();
|
|
|
|
{
|
|
REGISTER_TIMER_INFO("BwScalingTimer", getName().c_str());
|
|
|
|
if (inG0) {
|
|
// inG0 += outG .* inV1
|
|
inG0->rowDotMul(0, *outG, *inV1);
|
|
}
|
|
|
|
if (inG1) {
|
|
// inG1 += outG * weight;
|
|
inG1->addRowScale(0, *outG, *weightV);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace paddle
|