You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/demo/seqToseq/seqToseq_net_v2.py

91 lines
3.4 KiB

import paddle.v2.activation as activation
import paddle.v2.attr as attr
import paddle.v2.data_type as data_type
import paddle.v2.layer as layer
import paddle.v2.networks as networks
def seqToseq_net_v2(source_dict_dim, target_dict_dim):
### Network Architecture
word_vector_dim = 512 # dimension of word vector
decoder_size = 512 # dimension of hidden unit in GRU Decoder network
encoder_size = 512 # dimension of hidden unit in GRU Encoder network
#### Encoder
src_word_id = layer.data(
name='source_language_word',
type=data_type.dense_vector(source_dict_dim))
src_embedding = layer.embedding(
input=src_word_id,
size=word_vector_dim,
param_attr=attr.ParamAttr(name='_source_language_embedding'))
src_forward = networks.simple_gru(input=src_embedding, size=encoder_size)
src_backward = networks.simple_gru(
input=src_embedding, size=encoder_size, reverse=True)
encoded_vector = layer.concat(input=[src_forward, src_backward])
#### Decoder
with layer.mixed(size=decoder_size) as encoded_proj:
encoded_proj += layer.full_matrix_projection(input=encoded_vector)
backward_first = layer.first_seq(input=src_backward)
with layer.mixed(size=decoder_size, act=activation.Tanh()) as decoder_boot:
decoder_boot += layer.full_matrix_projection(input=backward_first)
def gru_decoder_with_attention(enc_vec, enc_proj, current_word):
decoder_mem = layer.memory(
name='gru_decoder', size=decoder_size, boot_layer=decoder_boot)
context = networks.simple_attention(
encoded_sequence=enc_vec,
encoded_proj=enc_proj,
decoder_state=decoder_mem)
with layer.mixed(size=decoder_size * 3) as decoder_inputs:
decoder_inputs += layer.full_matrix_projection(input=context)
decoder_inputs += layer.full_matrix_projection(input=current_word)
gru_step = layer.gru_step(
name='gru_decoder',
input=decoder_inputs,
output_mem=decoder_mem,
size=decoder_size)
with layer.mixed(
size=target_dict_dim, bias_attr=True,
act=activation.Softmax()) as out:
out += layer.full_matrix_projection(input=gru_step)
return out
decoder_group_name = "decoder_group"
group_input1 = layer.StaticInputV2(input=encoded_vector, is_seq=True)
group_input2 = layer.StaticInputV2(input=encoded_proj, is_seq=True)
group_inputs = [group_input1, group_input2]
trg_embedding = layer.embedding(
input=layer.data(
name='target_language_word',
type=data_type.dense_vector(target_dict_dim)),
size=word_vector_dim,
param_attr=attr.ParamAttr(name='_target_language_embedding'))
group_inputs.append(trg_embedding)
# For decoder equipped with attention mechanism, in training,
# target embeding (the groudtruth) is the data input,
# while encoded source sequence is accessed to as an unbounded memory.
# Here, the StaticInput defines a read-only memory
# for the recurrent_group.
decoder = layer.recurrent_group(
name=decoder_group_name,
step=gru_decoder_with_attention,
input=group_inputs)
lbl = layer.data(
name='target_language_next_word',
type=data_type.dense_vector(target_dict_dim))
cost = layer.classification_cost(input=decoder, label=lbl)
return cost