You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
180 lines
6.2 KiB
180 lines
6.2 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/framework/parallel_executor.h"
|
|
#include "paddle/fluid/platform/profiler.h"
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
#include "paddle/fluid/platform/nccl_helper.h"
|
|
#endif
|
|
|
|
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
|
|
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
|
|
class ParallelExecutorPrivate {
|
|
public:
|
|
explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
|
|
: places_(places) {}
|
|
|
|
std::vector<platform::Place> places_;
|
|
std::vector<Scope *> local_scopes_;
|
|
Scope *global_scope_;
|
|
std::unique_ptr<details::SSAGraphExecutor> executor_;
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
|
|
#endif
|
|
};
|
|
|
|
ParallelExecutor::ParallelExecutor(
|
|
size_t num_threads, bool use_event,
|
|
const std::vector<platform::Place> &places,
|
|
const std::unordered_set<std::string> ¶ms,
|
|
const ProgramDesc &startup_program, const ProgramDesc &main_program,
|
|
const std::string &loss_var_name, Scope *scope, bool allow_op_delay)
|
|
: member_(new ParallelExecutorPrivate(places)) {
|
|
member_->global_scope_ = scope;
|
|
|
|
// Step 1. RunStartupProgram and Bcast the params to devs.
|
|
Executor exe(places[0]);
|
|
exe.Run(startup_program, scope, 0);
|
|
// Create local scopes
|
|
for (size_t i = 0; i < member_->places_.size(); ++i) {
|
|
member_->local_scopes_.push_back(&scope->NewScope());
|
|
}
|
|
|
|
// Bcast Parameters to all GPUs
|
|
#ifdef PADDLE_WITH_CUDA
|
|
member_->nccl_ctxs_.reset(new platform::NCCLContextMap(member_->places_));
|
|
#endif
|
|
if (platform::is_gpu_place(places[0]) &&
|
|
member_->local_scopes_.size() != 1) { // Is CUDA
|
|
BCastParamsToGPUs(startup_program);
|
|
}
|
|
// Startup Program has been run. All local scopes has correct parameters.
|
|
|
|
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
|
|
// ncclOp
|
|
#ifdef PADDLE_WITH_CUDA
|
|
details::MultiDevSSAGraphBuilder builder(member_->places_, loss_var_name,
|
|
params, member_->local_scopes_,
|
|
member_->nccl_ctxs_.get());
|
|
#else
|
|
details::MultiDevSSAGraphBuilder builder(member_->places_, loss_var_name,
|
|
params, member_->local_scopes_);
|
|
#endif
|
|
auto graph = builder.Build(main_program);
|
|
|
|
member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
|
|
num_threads, use_event, member_->local_scopes_, places, std::move(graph),
|
|
allow_op_delay));
|
|
|
|
// Step 3. Create vars in each scope;
|
|
for (auto *scope : member_->local_scopes_) {
|
|
for (auto *var : main_program.Block(0).AllVars()) {
|
|
if (scope->FindVar(var->Name()) != nullptr) {
|
|
continue;
|
|
}
|
|
|
|
InitializeVariable(scope->Var(var->Name()), var->GetType());
|
|
}
|
|
}
|
|
}
|
|
|
|
void ParallelExecutor::BCastParamsToGPUs(
|
|
const ProgramDesc &startup_program) const {
|
|
#ifdef PADDLE_WITH_CUDA
|
|
auto *main_scope = member_->local_scopes_[0];
|
|
|
|
for (auto *var_desc : startup_program.Block(0).AllVars()) {
|
|
size_t idx = var_desc->Name().find("@GRAD");
|
|
if (idx != std::string::npos) continue;
|
|
if (var_desc->GetType() == proto::VarType::LOD_TENSOR) {
|
|
auto &main_tensor =
|
|
main_scope->FindVar(var_desc->Name())->Get<LoDTensor>();
|
|
|
|
auto &dims = main_tensor.dims();
|
|
|
|
if (paddle::platform::is_gpu_place(main_tensor.place())) {
|
|
size_t numel = main_tensor.numel();
|
|
ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
|
|
platform::NCCLGroupGuard guard;
|
|
for (size_t i = 0; i < member_->places_.size(); ++i) {
|
|
auto place = member_->places_[i];
|
|
void *buffer;
|
|
if (i == 0) {
|
|
buffer = const_cast<void *>(main_tensor.data<void>());
|
|
} else {
|
|
auto local_scope = member_->local_scopes_[i];
|
|
auto *t =
|
|
local_scope->Var(var_desc->Name())->GetMutable<LoDTensor>();
|
|
t->Resize(dims);
|
|
buffer = t->mutable_data(place, main_tensor.type());
|
|
}
|
|
auto &nccl_ctx = member_->nccl_ctxs_->at(place);
|
|
platform::dynload::ncclBcast(buffer, numel, data_type, 0,
|
|
nccl_ctx.comm_, nccl_ctx.stream());
|
|
}
|
|
} else {
|
|
platform::CPUPlace cpu;
|
|
for (size_t i = 1; i < member_->places_.size(); ++i) {
|
|
auto local_scope = member_->local_scopes_[i];
|
|
auto *t = local_scope->Var(var_desc->Name())->GetMutable<LoDTensor>();
|
|
t->Resize(dims);
|
|
t->mutable_data(cpu, main_tensor.type());
|
|
paddle::framework::TensorCopy(main_tensor, cpu, t);
|
|
}
|
|
}
|
|
}
|
|
member_->nccl_ctxs_->WaitAll();
|
|
}
|
|
#else
|
|
PADDLE_THROW("Not compiled with CUDA");
|
|
#endif
|
|
}
|
|
|
|
void ParallelExecutor::Run(
|
|
const std::vector<std::string> &fetch_tensors,
|
|
const std::string &fetched_var_name,
|
|
const std::unordered_map<std::string, LoDTensor> &feed_tensors) {
|
|
platform::RecordBlock b(0);
|
|
SplitTensorToPlaces(feed_tensors);
|
|
auto fetch_data = member_->executor_->Run(fetch_tensors);
|
|
*member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
|
|
fetch_data;
|
|
}
|
|
|
|
void ParallelExecutor::SplitTensorToPlaces(
|
|
const std::unordered_map<std::string, LoDTensor> &feed_tensors) {
|
|
for (auto it : feed_tensors) {
|
|
auto lod_tensors = it.second.SplitLoDTensor(member_->places_);
|
|
for (size_t j = 0; j < member_->places_.size(); ++j) {
|
|
// TODO(panxy0718): Do I need to delete this var?
|
|
member_->local_scopes_[j]
|
|
->Var(it.first)
|
|
->GetMutable<LoDTensor>()
|
|
->ShareDataWith(lod_tensors[j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace framework
|
|
} // namespace paddle
|