You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
93 lines
3.4 KiB
93 lines
3.4 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/operators/increment_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class IncrementOp : public framework::OperatorWithKernel {
|
|
public:
|
|
IncrementOp(const std::string &type, const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of IncrementOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of IncrementOp should not be null.");
|
|
PADDLE_ENFORCE_EQ(1, framework::product(ctx->GetInputDim("X")));
|
|
ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
|
|
ctx->ShareLoD("X", "Out");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
framework::OpKernelType kt = OperatorWithKernel::GetExpectedKernelType(ctx);
|
|
// IncrementOp kernel's device type is decided by input tensor place
|
|
kt.place_ = ctx.Input<framework::LoDTensor>("X")->place();
|
|
return kt;
|
|
}
|
|
};
|
|
|
|
class IncrementOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
IncrementOpMaker(OpProto *proto, OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "(Tensor) The input tensor of increment operator");
|
|
AddOutput("Out", "(Tensor) The output tensor of increment operator.");
|
|
AddAttr<float>("step",
|
|
"(float, default 1.0) "
|
|
"The step size by which the "
|
|
"input tensor will be incremented.")
|
|
.SetDefault(1.0);
|
|
AddComment(R"DOC(
|
|
Increment Operator.
|
|
|
|
The equation is:
|
|
$$Out = X + step$$
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class IncrementGradOpMaker : public framework::SingleGradOpDescMaker {
|
|
public:
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
std::unique_ptr<framework::OpDesc> Apply() const override {
|
|
auto *grad_op = new framework::OpDesc();
|
|
grad_op->SetType("increment");
|
|
grad_op->SetInput("X", Output("Out"));
|
|
grad_op->SetOutput("Out", Input("X"));
|
|
grad_op->SetAttr("step", -boost::get<float>(GetAttr("step")));
|
|
return std::unique_ptr<framework::OpDesc>(grad_op);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(increment, ops::IncrementOp, ops::IncrementOpMaker,
|
|
ops::IncrementGradOpMaker);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
increment, ops::IncrementKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::IncrementKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::IncrementKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::IncrementKernel<paddle::platform::CPUDeviceContext, int64_t>)
|