You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/framework/channel_test.cc

1009 lines
28 KiB

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/channel.h"
#include <chrono> // NOLINT
#include <thread> // NOLINT
#include "gtest/gtest.h"
using paddle::framework::Channel;
using paddle::framework::ChannelHolder;
using paddle::framework::MakeChannel;
using paddle::framework::CloseChannel;
TEST(Channel, ChannelCapacityTest) {
const size_t buffer_size = 10;
auto ch = MakeChannel<size_t>(buffer_size);
EXPECT_EQ(ch->Cap(), buffer_size);
CloseChannel(ch);
delete ch;
ch = MakeChannel<size_t>(0);
EXPECT_EQ(ch->Cap(), 0U);
CloseChannel(ch);
delete ch;
}
void RecevingOrderEqualToSendingOrder(Channel<int> *ch, int num_items) {
unsigned sum_send = 0;
std::thread t([&]() {
for (int i = 0; i < num_items; i++) {
ch->Send(&i);
sum_send += i;
}
});
std::this_thread::sleep_for(std::chrono::milliseconds(200));
for (int i = 0; i < num_items; i++) {
int recv = -1;
EXPECT_EQ(ch->Receive(&recv), true);
EXPECT_EQ(recv, i);
}
std::this_thread::sleep_for(std::chrono::milliseconds(200));
CloseChannel(ch);
t.join();
unsigned expected_sum = (num_items * (num_items - 1)) / 2;
EXPECT_EQ(sum_send, expected_sum);
delete ch;
}
TEST(Channel, SufficientBufferSizeDoesntBlock) {
const size_t buffer_size = 10;
auto ch = MakeChannel<size_t>(buffer_size);
for (size_t i = 0; i < buffer_size; ++i) {
ch->Send(&i);
}
size_t out;
for (size_t i = 0; i < buffer_size; ++i) {
EXPECT_EQ(ch->Receive(&out), true); // should not block
EXPECT_EQ(out, i);
}
CloseChannel(ch);
delete ch;
}
// This tests that a channel must return false
// on send and receive performed after closing the channel.
// Receive will only return false after close when queue is empty.
// By creating separate threads for sending and receiving, we make this
// function able to test both buffered and unbuffered channels.
void SendReceiveWithACloseChannelShouldPanic(Channel<size_t> *ch) {
const size_t data = 5;
std::thread send_thread{[&]() {
size_t i = data;
ch->Send(&i); // should not block
}};
std::thread recv_thread{[&]() {
size_t i;
EXPECT_EQ(ch->Receive(&i), true); // should not block
EXPECT_EQ(i, data);
}};
send_thread.join();
recv_thread.join();
// After closing send should panic. Receive should
// also false as there is no data in queue.
CloseChannel(ch);
send_thread = std::thread{[&]() {
size_t i = data;
bool is_exception = false;
try {
ch->Send(&i);
} catch (paddle::platform::EnforceNotMet e) {
is_exception = true;
}
EXPECT_EQ(is_exception, true);
}};
recv_thread = std::thread{[&]() {
size_t i;
// should return false because channel is closed and queue is empty
EXPECT_EQ(ch->Receive(&i), false);
}};
send_thread.join();
recv_thread.join();
}
TEST(Channel, SendReceiveClosedBufferedChannelPanics) {
size_t buffer_size = 10;
auto ch = MakeChannel<size_t>(buffer_size);
SendReceiveWithACloseChannelShouldPanic(ch);
delete ch;
}
TEST(Channel, SendReceiveClosedUnBufferedChannelPanics) {
auto ch = MakeChannel<size_t>(0);
SendReceiveWithACloseChannelShouldPanic(ch);
delete ch;
}
TEST(Channel, ReceiveFromBufferedChannelReturnResidualValuesTest) {
const size_t buffer_size = 10;
auto ch = MakeChannel<size_t>(buffer_size);
for (size_t i = 0; i < buffer_size; ++i) {
ch->Send(&i); // sending should not block
}
size_t out;
for (size_t i = 0; i < buffer_size / 2; ++i) {
EXPECT_EQ(ch->Receive(&out), true); // receiving should not block
EXPECT_EQ(out, i);
}
CloseChannel(ch);
for (size_t i = buffer_size / 2; i < buffer_size; ++i) {
EXPECT_EQ(ch->Receive(&out),
true); // receving should return residual values.
EXPECT_EQ(out, i);
}
for (size_t i = 0; i < buffer_size; ++i) {
EXPECT_EQ(ch->Receive(&out),
false); // receiving on closed channel should return false
}
delete ch;
}
TEST(Channel, ConcurrentSendNonConcurrentReceiveWithSufficientBufferSize) {
const size_t buffer_size = 10;
auto ch = MakeChannel<size_t>(buffer_size);
std::thread t([&]() {
// Try to write more than buffer size.
for (size_t i = 0; i < 2 * buffer_size; ++i) {
if (i < buffer_size) {
ch->Send(&i); // should block after 10 iterations
} else {
bool is_exception = false;
try {
ch->Send(&i);
} catch (paddle::platform::EnforceNotMet e) {
is_exception = true;
}
EXPECT_EQ(is_exception, true);
}
}
});
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec
CloseChannel(ch);
t.join();
delete ch;
}
TEST(Channel, RecevingOrderEqualToSendingOrderWithUnBufferedChannel) {
auto ch = MakeChannel<int>(0);
RecevingOrderEqualToSendingOrder(ch, 20);
}
TEST(Channel, RecevingOrderEqualToSendingOrderWithBufferedChannel1) {
// Test that Receive Order is same as Send Order when number of items
// sent is less than size of buffer
auto ch = MakeChannel<int>(10);
RecevingOrderEqualToSendingOrder(ch, 5);
}
TEST(Channel, RecevingOrderEqualToSendingOrderWithBufferedChannel2) {
// Test that Receive Order is same as Send Order when number of items
// sent is equal to size of buffer
auto ch = MakeChannel<int>(10);
RecevingOrderEqualToSendingOrder(ch, 10);
}
TEST(Channel, RecevingOrderEqualToSendingOrderWithBufferedChannel3) {
// Test that Receive Order is same as Send Order when number of items
// sent is greater than the size of buffer
auto ch = MakeChannel<int>(10);
RecevingOrderEqualToSendingOrder(ch, 20);
}
void ChannelCloseUnblocksReceiversTest(Channel<int> *ch) {
const size_t kNumThreads = 5;
std::thread t[kNumThreads];
bool thread_ended[kNumThreads];
// Launches threads that try to read and are blocked because of no writers
for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
t[i] = std::thread(
[&](bool *p) {
int data;
EXPECT_EQ(ch->Receive(&data), false);
*p = true;
},
&thread_ended[i]);
}
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec
// Verify that all the threads are blocked
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
// Explicitly close the channel
// This should unblock all receivers
CloseChannel(ch);
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec
// Verify that all threads got unblocked
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
void ChannelCloseUnblocksSendersTest(Channel<int> *ch, bool isBuffered) {
const size_t kNumThreads = 5;
std::thread t[kNumThreads];
bool thread_ended[kNumThreads];
bool send_success[kNumThreads];
// Launches threads that try to write and are blocked because of no readers
for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
send_success[i] = false;
t[i] = std::thread(
[&](bool *ended, bool *success) {
int data = 10;
bool is_exception = false;
try {
ch->Send(&data);
} catch (paddle::platform::EnforceNotMet e) {
is_exception = true;
}
*success = !is_exception;
*ended = true;
},
&thread_ended[i], &send_success[i]);
}
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
if (isBuffered) {
// If ch is Buffered, atleast 4 threads must be blocked.
int ct = 0;
for (size_t i = 0; i < kNumThreads; i++) {
if (!thread_ended[i]) ct++;
}
EXPECT_GE(ct, 4);
} else {
// If ch is UnBuffered, all the threads should be blocked.
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
}
// Explicitly close the thread
// This should unblock all senders
CloseChannel(ch);
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
// Verify that all threads got unblocked
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
if (isBuffered) {
// Verify that only 1 send was successful
int ct = 0;
for (size_t i = 0; i < kNumThreads; i++) {
if (send_success[i]) ct++;
}
// Only 1 send must be successful
EXPECT_EQ(ct, 1);
}
for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
// This tests that closing a buffered channel also unblocks
// any receivers waiting on the channel
TEST(Channel, BufferedChannelCloseUnblocksReceiversTest) {
auto ch = MakeChannel<int>(1);
ChannelCloseUnblocksReceiversTest(ch);
delete ch;
}
// This tests that closing a buffered channel also unblocks
// any senders waiting for channel to have write space
TEST(Channel, BufferedChannelCloseUnblocksSendersTest) {
auto ch = MakeChannel<int>(1);
ChannelCloseUnblocksSendersTest(ch, true);
delete ch;
}
// This tests that closing an unbuffered channel also unblocks
// unblocks any receivers waiting for senders
TEST(Channel, UnbufferedChannelCloseUnblocksReceiversTest) {
auto ch = MakeChannel<int>(0);
ChannelCloseUnblocksReceiversTest(ch);
delete ch;
}
// This tests that closing an unbuffered channel also unblocks
// unblocks any senders waiting for senders
TEST(Channel, UnbufferedChannelCloseUnblocksSendersTest) {
auto ch = MakeChannel<int>(0);
ChannelCloseUnblocksSendersTest(ch, false);
delete ch;
}
TEST(Channel, UnbufferedLessReceiveMoreSendTest) {
auto ch = MakeChannel<int>(0);
unsigned sum_send = 0;
// Send should block after three iterations
// since we only have three receivers.
std::thread t([&]() {
// Try to send more number of times
// than receivers
for (int i = 0; i < 4; i++) {
try {
ch->Send(&i);
sum_send += i;
} catch (paddle::platform::EnforceNotMet e) {
}
}
});
for (int i = 0; i < 3; i++) {
int recv;
ch->Receive(&recv);
EXPECT_EQ(recv, i);
}
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec
EXPECT_EQ(sum_send, 3U);
CloseChannel(ch);
t.join();
delete ch;
}
TEST(Channel, UnbufferedMoreReceiveLessSendTest) {
auto ch = MakeChannel<int>(0);
unsigned sum_send = 0;
unsigned sum_receive = 0;
// The receiver should block after 5
// iterations, since there are only 5 senders.
std::thread t([&]() {
for (int i = 0; i < 8; i++) {
int recv;
ch->Receive(&recv); // should block after the fifth iteration.
EXPECT_EQ(recv, i);
sum_receive += i;
}
});
for (int i = 0; i < 5; i++) {
ch->Send(&i);
sum_send += i;
}
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec
EXPECT_EQ(sum_send, 10U);
EXPECT_EQ(sum_receive, 10U);
// send three more elements
for (int i = 5; i < 8; i++) {
ch->Send(&i);
sum_send += i;
}
CloseChannel(ch);
t.join();
EXPECT_EQ(sum_send, 28U);
EXPECT_EQ(sum_receive, 28U);
delete ch;
}
// This tests that destroying a channel unblocks
// any senders waiting for channel to have write space
void ChannelDestroyUnblockSenders(Channel<int> *ch, bool isBuffered) {
const size_t kNumThreads = 5;
std::thread t[kNumThreads];
bool thread_ended[kNumThreads];
bool send_success[kNumThreads];
// Launches threads that try to write and are blocked because of no readers
for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
send_success[i] = false;
t[i] = std::thread(
[&](bool *ended, bool *success) {
int data = 10;
bool is_exception = false;
try {
ch->Send(&data);
} catch (paddle::platform::EnforceNotMet e) {
is_exception = true;
}
*success = !is_exception;
*ended = true;
},
&thread_ended[i], &send_success[i]);
}
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec
if (isBuffered) {
// If channel is buffered, verify that atleast 4 threads are blocked
int ct = 0;
for (size_t i = 0; i < kNumThreads; i++) {
if (thread_ended[i] == false) ct++;
}
// Atleast 4 threads must be blocked
EXPECT_GE(ct, 4);
} else {
// Verify that all the threads are blocked
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
}
// Explicitly destroy the channel
delete ch;
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
// Verify that all threads got unblocked
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
// Count number of successful sends
int ct = 0;
for (size_t i = 0; i < kNumThreads; i++) {
if (send_success[i]) ct++;
}
if (isBuffered) {
// Only 1 send must be successful
EXPECT_EQ(ct, 1);
} else {
// In unbuffered channel, no send should be successful
EXPECT_EQ(ct, 0);
}
// Join all threads
for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
// This tests that destroying a channel also unblocks
// any receivers waiting on the channel
void ChannelDestroyUnblockReceivers(Channel<int> *ch) {
const size_t kNumThreads = 5;
std::thread t[kNumThreads];
bool thread_ended[kNumThreads];
// Launches threads that try to read and are blocked because of no writers
for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
t[i] = std::thread(
[&](bool *p) {
int data;
// All reads should return false
EXPECT_EQ(ch->Receive(&data), false);
*p = true;
},
&thread_ended[i]);
}
std::this_thread::sleep_for(std::chrono::milliseconds(100)); // wait
// Verify that all threads are blocked
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
// delete the channel
delete ch;
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
// Verify that all threads got unblocked
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
TEST(Channel, BufferedChannelDestroyUnblocksReceiversTest) {
size_t buffer_size = 1;
auto ch = MakeChannel<int>(buffer_size);
ChannelDestroyUnblockReceivers(ch);
}
TEST(Channel, BufferedChannelDestroyUnblocksSendersTest) {
size_t buffer_size = 1;
auto ch = MakeChannel<int>(buffer_size);
ChannelDestroyUnblockSenders(ch, true);
}
// This tests that destroying an unbuffered channel also unblocks
// unblocks any receivers waiting for senders
TEST(Channel, UnbufferedChannelDestroyUnblocksReceiversTest) {
auto ch = MakeChannel<int>(0);
ChannelDestroyUnblockReceivers(ch);
}
TEST(Channel, UnbufferedChannelDestroyUnblocksSendersTest) {
auto ch = MakeChannel<int>(0);
ChannelDestroyUnblockSenders(ch, false);
}
TEST(ChannelHolder, ChannelHolderCapacityTest) {
const size_t buffer_size = 10;
ChannelHolder *ch = new ChannelHolder();
ch->Reset<int>(buffer_size);
EXPECT_EQ(ch->Cap(), buffer_size);
delete ch;
ch = new ChannelHolder();
ch->Reset<int>(0);
EXPECT_EQ(ch->Cap(), 0U);
delete ch;
}
void ChannelHolderSendReceive(ChannelHolder *ch) {
unsigned sum_send = 0;
std::thread t([&]() {
for (int i = 0; i < 5; i++) {
ch->Send(&i);
sum_send += i;
}
});
for (int i = 0; i < 5; i++) {
int recv;
EXPECT_EQ(ch->Receive(&recv), true);
EXPECT_EQ(recv, i);
}
ch->close();
t.join();
EXPECT_EQ(sum_send, 10U);
}
TEST(ChannelHolder, ChannelHolderBufferedSendReceiveTest) {
ChannelHolder *ch = new ChannelHolder();
ch->Reset<int>(10);
ChannelHolderSendReceive(ch);
delete ch;
}
TEST(ChannelHolder, ChannelHolderUnBufferedSendReceiveTest) {
ChannelHolder *ch = new ChannelHolder();
ch->Reset<int>(0);
ChannelHolderSendReceive(ch);
delete ch;
}
TEST(ChannelHolder, ChannelUninitializedTest) {
ChannelHolder *ch = new ChannelHolder();
EXPECT_EQ(ch->IsInitialized(), false);
int i = 10;
bool send_exception = false;
try {
ch->Send(&i);
} catch (paddle::platform::EnforceNotMet e) {
send_exception = true;
}
EXPECT_EQ(send_exception, true);
bool recv_exception = false;
try {
ch->Receive(&i);
} catch (paddle::platform::EnforceNotMet e) {
recv_exception = true;
}
EXPECT_EQ(recv_exception, true);
bool is_exception = false;
try {
ch->Type();
} catch (paddle::platform::EnforceNotMet e) {
is_exception = true;
}
EXPECT_EQ(is_exception, true);
delete ch;
}
TEST(ChannelHolder, ChannelInitializedTest) {
ChannelHolder *ch = new ChannelHolder();
ch->Reset<int>(2);
EXPECT_EQ(ch->IsInitialized(), true);
// Channel should remain intialized even after close
ch->close();
EXPECT_EQ(ch->IsInitialized(), true);
delete ch;
}
TEST(ChannelHolder, TypeMismatchSendTest) {
// Test with unbuffered channel
ChannelHolder *ch = new ChannelHolder();
ch->Reset<int>(0);
bool is_exception = false;
bool boolean_data = true;
try {
ch->Send(&boolean_data);
} catch (paddle::platform::EnforceNotMet e) {
is_exception = true;
}
EXPECT_EQ(is_exception, true);
delete ch;
// Test with Buffered Channel
ch = new ChannelHolder();
ch->Reset<float>(10);
is_exception = false;
int int_data = 23;
try {
ch->Send(&int_data);
} catch (paddle::platform::EnforceNotMet e) {
is_exception = true;
}
EXPECT_EQ(is_exception, true);
delete ch;
}
TEST(ChannelHolder, TypeMismatchReceiveTest) {
// Test with unbuffered channel
ChannelHolder *ch = new ChannelHolder();
ch->Reset<int>(0);
bool is_exception = false;
bool float_data;
try {
ch->Receive(&float_data);
} catch (paddle::platform::EnforceNotMet e) {
is_exception = true;
}
EXPECT_EQ(is_exception, true);
delete ch;
// Test with Buffered Channel
ch = new ChannelHolder();
ch->Reset<float>(10);
is_exception = false;
int int_data = 23;
try {
ch->Receive(&int_data);
} catch (paddle::platform::EnforceNotMet e) {
is_exception = true;
}
EXPECT_EQ(is_exception, true);
delete ch;
}
void ChannelHolderCloseUnblocksReceiversTest(ChannelHolder *ch) {
const size_t kNumThreads = 5;
std::thread t[kNumThreads];
bool thread_ended[kNumThreads];
// Launches threads that try to read and are blocked because of no writers
for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
t[i] = std::thread(
[&](bool *p) {
int data;
EXPECT_EQ(ch->Receive(&data), false);
*p = true;
},
&thread_ended[i]);
}
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec
// Verify that all the threads are blocked
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
// Explicitly close the channel
// This should unblock all receivers
ch->close();
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec
// Verify that all threads got unblocked
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
void ChannelHolderCloseUnblocksSendersTest(ChannelHolder *ch, bool isBuffered) {
const size_t kNumThreads = 5;
std::thread t[kNumThreads];
bool thread_ended[kNumThreads];
bool send_success[kNumThreads];
// Launches threads that try to write and are blocked because of no readers
for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
send_success[i] = false;
t[i] = std::thread(
[&](bool *ended, bool *success) {
int data = 10;
bool is_exception = false;
try {
ch->Send(&data);
} catch (paddle::platform::EnforceNotMet e) {
is_exception = true;
}
*success = !is_exception;
*ended = true;
},
&thread_ended[i], &send_success[i]);
}
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
if (isBuffered) {
// If ch is Buffered, atleast 4 threads must be blocked.
int ct = 0;
for (size_t i = 0; i < kNumThreads; i++) {
if (!thread_ended[i]) ct++;
}
EXPECT_GE(ct, 4);
} else {
// If ch is UnBuffered, all the threads should be blocked.
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
}
// Explicitly close the thread
// This should unblock all senders
ch->close();
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
// Verify that all threads got unblocked
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
if (isBuffered) {
// Verify that only 1 send was successful
int ct = 0;
for (size_t i = 0; i < kNumThreads; i++) {
if (send_success[i]) ct++;
}
// Only 1 send must be successful
EXPECT_EQ(ct, 1);
}
for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
// This tests that closing a channelholder unblocks
// any receivers waiting on the channel
TEST(ChannelHolder, ChannelHolderCloseUnblocksReceiversTest) {
// Check for buffered channel
ChannelHolder *ch = new ChannelHolder();
ch->Reset<int>(1);
ChannelHolderCloseUnblocksReceiversTest(ch);
delete ch;
// Check for unbuffered channel
ch = new ChannelHolder();
ch->Reset<int>(0);
ChannelHolderCloseUnblocksReceiversTest(ch);
delete ch;
}
// This tests that closing a channelholder unblocks
// any senders waiting for channel to have write space
TEST(Channel, ChannelHolderCloseUnblocksSendersTest) {
// Check for buffered channel
ChannelHolder *ch = new ChannelHolder();
ch->Reset<int>(1);
ChannelHolderCloseUnblocksSendersTest(ch, true);
delete ch;
// Check for unbuffered channel
ch = new ChannelHolder();
ch->Reset<int>(0);
ChannelHolderCloseUnblocksSendersTest(ch, false);
delete ch;
}
// This tests that destroying a channelholder unblocks
// any senders waiting for channel
void ChannelHolderDestroyUnblockSenders(ChannelHolder *ch, bool isBuffered) {
const size_t kNumThreads = 5;
std::thread t[kNumThreads];
bool thread_ended[kNumThreads];
bool send_success[kNumThreads];
// Launches threads that try to write and are blocked because of no readers
for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
send_success[i] = false;
t[i] = std::thread(
[&](bool *ended, bool *success) {
int data = 10;
bool is_exception = false;
try {
ch->Send(&data);
} catch (paddle::platform::EnforceNotMet e) {
is_exception = true;
}
*success = !is_exception;
*ended = true;
},
&thread_ended[i], &send_success[i]);
}
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec
if (isBuffered) {
// If channel is buffered, verify that atleast 4 threads are blocked
int ct = 0;
for (size_t i = 0; i < kNumThreads; i++) {
if (thread_ended[i] == false) ct++;
}
// Atleast 4 threads must be blocked
EXPECT_GE(ct, 4);
} else {
// Verify that all the threads are blocked
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
}
// Explicitly destroy the channel
delete ch;
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
// Verify that all threads got unblocked
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
// Count number of successfuld sends
int ct = 0;
for (size_t i = 0; i < kNumThreads; i++) {
if (send_success[i]) ct++;
}
if (isBuffered) {
// Only 1 send must be successful
EXPECT_EQ(ct, 1);
} else {
// In unbuffered channel, no send should be successful
EXPECT_EQ(ct, 0);
}
// Join all threads
for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
// This tests that destroying a channelholder also unblocks
// any receivers waiting on the channel
void ChannelHolderDestroyUnblockReceivers(ChannelHolder *ch) {
const size_t kNumThreads = 5;
std::thread t[kNumThreads];
bool thread_ended[kNumThreads];
// Launches threads that try to read and are blocked because of no writers
for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
t[i] = std::thread(
[&](bool *p) {
int data;
// All reads should return false
EXPECT_EQ(ch->Receive(&data), false);
*p = true;
},
&thread_ended[i]);
}
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
// Verify that all threads are blocked
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
// delete the channel
delete ch;
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
// Verify that all threads got unblocked
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
TEST(ChannelHolder, ChannelHolderDestroyUnblocksReceiversTest) {
// Check for Buffered Channel
ChannelHolder *ch = new ChannelHolder();
ch->Reset<int>(1);
ChannelHolderDestroyUnblockReceivers(ch);
// ch is already deleted already deleted in
// ChannelHolderDestroyUnblockReceivers
// Check for Unbuffered channel
ch = new ChannelHolder();
ch->Reset<int>(0);
ChannelHolderDestroyUnblockReceivers(ch);
}
TEST(ChannelHolder, ChannelHolderDestroyUnblocksSendersTest) {
// Check for Buffered Channel
ChannelHolder *ch = new ChannelHolder();
ch->Reset<int>(1);
ChannelHolderDestroyUnblockSenders(ch, true);
// ch is already deleted already deleted in
// ChannelHolderDestroyUnblockReceivers
// Check for Unbuffered channel
ch = new ChannelHolder();
ch->Reset<int>(0);
ChannelHolderDestroyUnblockSenders(ch, false);
}
// This tests that closing a channelholder many times.
void ChannelHolderManyTimesClose(ChannelHolder *ch) {
const int kNumThreads = 15;
std::thread t[kNumThreads];
bool thread_ended[kNumThreads];
// Launches threads that try to send data to channel.
for (size_t i = 0; i < kNumThreads / 3; i++) {
thread_ended[i] = false;
t[i] = std::thread(
[&](bool *ended) {
int data = 10;
ch->Send(&data);
*ended = true;
},
&thread_ended[i]);
}
// Launches threads that try to receive data to channel.
for (size_t i = kNumThreads / 3; i < 2 * kNumThreads / 3; i++) {
thread_ended[i] = false;
t[i] = std::thread(
[&](bool *p) {
int data;
if (ch->Receive(&data)) {
EXPECT_EQ(data, 10);
}
*p = true;
},
&thread_ended[i]);
}
// Launches threads that try to close the channel.
for (size_t i = 2 * kNumThreads / 3; i < kNumThreads; i++) {
thread_ended[i] = false;
t[i] = std::thread(
[&](bool *p) {
if (!ch->IsClosed()) {
ch->close();
}
*p = true;
},
&thread_ended[i]);
}
std::this_thread::sleep_for(std::chrono::milliseconds(100)); // wait
// Verify that all threads are unblocked
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
EXPECT_TRUE(ch->IsClosed());
// delete the channel
delete ch;
for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
TEST(ChannelHolder, ChannelHolderManyTimesCloseTest) {
// Check for Buffered Channel
ChannelHolder *ch = new ChannelHolder();
ch->Reset<int>(10);
ChannelHolderManyTimesClose(ch);
}