You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
223 lines
7.7 KiB
223 lines
7.7 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/framework/parallel_executor.h"
|
|
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <vector>
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
#include "paddle/fluid/platform/nccl_helper.h"
|
|
#endif
|
|
|
|
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
|
|
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
|
|
#include "paddle/fluid/platform/profiler.h"
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
|
|
class ParallelExecutorPrivate {
|
|
public:
|
|
explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
|
|
: places_(places) {}
|
|
|
|
std::vector<platform::Place> places_;
|
|
std::vector<Scope *> local_scopes_;
|
|
Scope *global_scope_;
|
|
std::unique_ptr<details::SSAGraphExecutor> executor_;
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
|
|
#endif
|
|
|
|
std::vector<std::tuple<std::string, proto::VarType::Type, bool>> var_types_;
|
|
};
|
|
|
|
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
|
|
return member_->local_scopes_;
|
|
}
|
|
|
|
ParallelExecutor::ParallelExecutor(
|
|
size_t num_threads, bool use_event,
|
|
const std::vector<platform::Place> &places,
|
|
const std::unordered_set<std::string> ¶ms,
|
|
const std::unordered_set<std::string> &bcast_vars,
|
|
const ProgramDesc &main_program, const std::string &loss_var_name,
|
|
Scope *scope, const std::vector<Scope *> &local_scopes, bool allow_op_delay)
|
|
: member_(new ParallelExecutorPrivate(places)) {
|
|
member_->global_scope_ = scope;
|
|
|
|
// Step 1. Bcast the params to devs.
|
|
// Create local scopes
|
|
if (local_scopes.empty()) {
|
|
for (size_t i = 0; i < member_->places_.size(); ++i) {
|
|
member_->local_scopes_.push_back(&scope->NewScope());
|
|
}
|
|
} else {
|
|
PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
|
|
for (size_t i = 0; i < member_->places_.size(); ++i) {
|
|
member_->local_scopes_.push_back(local_scopes[i]);
|
|
}
|
|
}
|
|
|
|
// Bcast Parameters to all GPUs
|
|
#ifdef PADDLE_WITH_CUDA
|
|
member_->nccl_ctxs_.reset(new platform::NCCLContextMap(member_->places_));
|
|
#endif
|
|
if (platform::is_gpu_place(places[0]) && member_->local_scopes_.size() != 1 &&
|
|
local_scopes.empty()) { // Is CUDA
|
|
BCastParamsToGPUs(bcast_vars);
|
|
}
|
|
// Startup Program has been run. All local scopes has correct parameters.
|
|
|
|
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
|
|
// ncclOp
|
|
#ifdef PADDLE_WITH_CUDA
|
|
details::MultiDevSSAGraphBuilder builder(member_->places_, loss_var_name,
|
|
params, member_->local_scopes_,
|
|
member_->nccl_ctxs_.get());
|
|
#else
|
|
details::MultiDevSSAGraphBuilder builder(member_->places_, loss_var_name,
|
|
params, member_->local_scopes_);
|
|
#endif
|
|
auto graph = builder.Build(main_program);
|
|
|
|
member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
|
|
num_threads, use_event, member_->local_scopes_, places, std::move(graph),
|
|
allow_op_delay));
|
|
|
|
// Step 3. Create vars in each scope;
|
|
for (auto *var : main_program.Block(0).AllVars()) {
|
|
member_->var_types_.emplace_back(var->Name(), var->GetType(),
|
|
var->Persistable());
|
|
}
|
|
}
|
|
|
|
void ParallelExecutor::BCastParamsToGPUs(
|
|
const std::unordered_set<std::string> &vars) const {
|
|
#ifdef PADDLE_WITH_CUDA
|
|
auto *main_scope = member_->local_scopes_[0];
|
|
|
|
for (auto &var : vars) {
|
|
auto *main_var = main_scope->FindVar(var);
|
|
if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
|
|
continue;
|
|
}
|
|
|
|
auto &main_tensor = main_var->Get<LoDTensor>();
|
|
auto &dims = main_tensor.dims();
|
|
if (paddle::platform::is_gpu_place(main_tensor.place())) {
|
|
size_t numel = main_tensor.numel();
|
|
ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
|
|
platform::NCCLGroupGuard guard;
|
|
for (size_t i = 0; i < member_->places_.size(); ++i) {
|
|
auto place = member_->places_[i];
|
|
void *buffer;
|
|
if (i == 0) {
|
|
buffer = const_cast<void *>(main_tensor.data<void>());
|
|
} else {
|
|
auto local_scope = member_->local_scopes_[i];
|
|
auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
|
|
t->Resize(dims);
|
|
buffer = t->mutable_data(place, main_tensor.type());
|
|
}
|
|
auto &nccl_ctx = member_->nccl_ctxs_->at(place);
|
|
platform::dynload::ncclBcast(buffer, numel, data_type, 0,
|
|
nccl_ctx.comm_, nccl_ctx.stream());
|
|
}
|
|
} else {
|
|
platform::CPUPlace cpu;
|
|
for (size_t i = 1; i < member_->places_.size(); ++i) {
|
|
auto local_scope = member_->local_scopes_[i];
|
|
auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
|
|
t->Resize(dims);
|
|
t->mutable_data(cpu, main_tensor.type());
|
|
paddle::framework::TensorCopy(main_tensor, cpu, t);
|
|
}
|
|
}
|
|
member_->nccl_ctxs_->WaitAll();
|
|
}
|
|
#else
|
|
PADDLE_THROW("Not compiled with CUDA");
|
|
#endif
|
|
}
|
|
|
|
void ParallelExecutor::Run(
|
|
const std::vector<std::string> &fetch_tensors,
|
|
const std::string &fetched_var_name,
|
|
const std::unordered_map<std::string, LoDTensor> &feed_tensors) {
|
|
platform::RecordBlock b(0);
|
|
SplitTensorToPlaces(feed_tensors);
|
|
|
|
// Create local scopes.
|
|
for (auto &scope : member_->local_scopes_) {
|
|
Scope &local_scope = scope->NewScope();
|
|
*scope->Var(details::kLocalExecScopeName)->GetMutable<Scope *>() =
|
|
&local_scope;
|
|
|
|
for (auto &name_type_pair : member_->var_types_) {
|
|
if (scope->FindVar(std::get<0>(name_type_pair)) != nullptr) {
|
|
continue;
|
|
}
|
|
|
|
if (std::get<2>(name_type_pair)) { // Persistable
|
|
InitializeVariable(scope->Var(std::get<0>(name_type_pair)),
|
|
std::get<1>(name_type_pair));
|
|
} else {
|
|
InitializeVariable(scope->Var(std::get<0>(name_type_pair)),
|
|
std::get<1>(name_type_pair));
|
|
}
|
|
}
|
|
}
|
|
|
|
auto fetch_data = member_->executor_->Run(fetch_tensors);
|
|
*member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
|
|
fetch_data;
|
|
|
|
// Wait All computational streams
|
|
for (auto p : member_->places_) {
|
|
platform::DeviceContextPool::Instance().Get(p)->Wait();
|
|
}
|
|
for (auto &scope : member_->local_scopes_) {
|
|
auto &local_scope =
|
|
*scope->Var(details::kLocalExecScopeName)->GetMutable<Scope *>();
|
|
scope->DeleteScope(local_scope);
|
|
local_scope = nullptr;
|
|
}
|
|
}
|
|
|
|
void ParallelExecutor::SplitTensorToPlaces(
|
|
const std::unordered_map<std::string, LoDTensor> &feed_tensors) {
|
|
for (auto it : feed_tensors) {
|
|
auto lod_tensors = it.second.SplitLoDTensor(member_->places_);
|
|
PADDLE_ENFORCE_EQ(
|
|
member_->places_.size(), lod_tensors.size(),
|
|
"The number of samples of current batch is less than the count of "
|
|
"devices, currently, it is not allowed. (%d vs %d)",
|
|
member_->places_.size(), lod_tensors.size());
|
|
for (size_t j = 0; j < member_->places_.size(); ++j) {
|
|
// TODO(panxy0718): Do I need to delete this var?
|
|
auto t =
|
|
member_->local_scopes_[j]->Var(it.first)->GetMutable<LoDTensor>();
|
|
t->ShareDataWith(lod_tensors[j]);
|
|
t->set_lod(lod_tensors[j].lod());
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace framework
|
|
} // namespace paddle
|