You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
110 lines
3.5 KiB
110 lines
3.5 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "SwitchOrderLayer.h"
|
|
#include "paddle/utils/Stat.h"
|
|
|
|
namespace paddle {
|
|
|
|
REGISTER_LAYER(switch_order, SwitchOrderLayer);
|
|
|
|
bool SwitchOrderLayer::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
/* Initialize the basic parent class */
|
|
Layer::init(layerMap, parameterMap);
|
|
auto& img_conf = config_.inputs(0).image_conf();
|
|
size_t inD = img_conf.img_size_z();
|
|
size_t inH =
|
|
img_conf.has_img_size_y() ? img_conf.img_size_y() : img_conf.img_size();
|
|
size_t inW = img_conf.img_size();
|
|
size_t inC = img_conf.channels();
|
|
inH = inH * inD;
|
|
inDims_ = TensorShape({0, inC, inH, inW});
|
|
outDims_ = TensorShape(4);
|
|
|
|
auto& reshape_conf = config_.reshape_conf();
|
|
for (int i = 0; i < reshape_conf.height_axis_size(); i++) {
|
|
heightAxis_.push_back(reshape_conf.height_axis(i));
|
|
}
|
|
for (int i = 0; i < reshape_conf.width_axis_size(); i++) {
|
|
widthAxis_.push_back(reshape_conf.width_axis(i));
|
|
}
|
|
createFunction(nchw2nhwc_, "NCHW2NHWC", FuncConfig());
|
|
createFunction(nhwc2nchw_, "NHWC2NCHW", FuncConfig());
|
|
return true;
|
|
}
|
|
|
|
void SwitchOrderLayer::setOutDims() {
|
|
outDims_.setDim(0, inDims_[0]);
|
|
outDims_.setDim(1, inDims_[2]);
|
|
outDims_.setDim(2, inDims_[3]);
|
|
outDims_.setDim(3, inDims_[1]);
|
|
reshapeHeight_ = 1;
|
|
for (size_t i = 0; i < heightAxis_.size(); i++) {
|
|
reshapeHeight_ *= outDims_[heightAxis_[i]];
|
|
}
|
|
output_.setFrameHeight(reshapeHeight_);
|
|
reshapeWidth_ = 1;
|
|
for (size_t i = 0; i < widthAxis_.size(); i++) {
|
|
reshapeWidth_ *= outDims_[widthAxis_[i]];
|
|
}
|
|
output_.setFrameWidth(reshapeWidth_);
|
|
}
|
|
|
|
void SwitchOrderLayer::setInDims() {
|
|
MatrixPtr input = inputLayers_[0]->getOutputValue();
|
|
size_t batchSize = input->getHeight();
|
|
inDims_.setDim(0, batchSize);
|
|
int d = inputLayers_[0]->getOutput().getFrameDepth();
|
|
d = (d == 0 ? 1 : d);
|
|
int h = inputLayers_[0]->getOutput().getFrameHeight();
|
|
if (h != 0) inDims_.setDim(2, h * d);
|
|
int w = inputLayers_[0]->getOutput().getFrameWidth();
|
|
if (w != 0) inDims_.setDim(3, w);
|
|
int totalCount = input->getElementCnt();
|
|
int channels = totalCount / (inDims_[0] * inDims_[2] * inDims_[3]);
|
|
if (channels != 0) inDims_.setDim(1, channels);
|
|
}
|
|
|
|
void SwitchOrderLayer::forward(PassType passType) {
|
|
Layer::forward(passType);
|
|
setInDims();
|
|
setOutDims();
|
|
resetOutput(outDims_[0], outDims_[1] * outDims_[2] * outDims_[3]);
|
|
if (heightAxis_.size() > 0) {
|
|
resetOutput(reshapeHeight_, reshapeWidth_);
|
|
}
|
|
|
|
// switch NCHW to NHWC
|
|
BufferArgs inputs;
|
|
BufferArgs outputs;
|
|
inputs.addArg(*getInputValue(0), inDims_);
|
|
outputs.addArg(*getOutputValue(), outDims_);
|
|
nchw2nhwc_[0]->calc(inputs, outputs);
|
|
forwardActivation();
|
|
}
|
|
|
|
void SwitchOrderLayer::backward(const UpdateCallback& callback) {
|
|
(void)callback;
|
|
backwardActivation();
|
|
|
|
// switch NHWC to NCHW
|
|
BufferArgs inputs;
|
|
BufferArgs outputs;
|
|
inputs.addArg(*getOutputGrad(), outDims_);
|
|
outputs.addArg(*getInputGrad(0), inDims_, ADD_TO);
|
|
nhwc2nchw_[0]->calc(inputs, outputs);
|
|
}
|
|
} // namespace paddle
|