You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/parameter/Regularizer.h

98 lines
3.9 KiB

/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "ParameterUpdaterBase.h"
namespace paddle {
// Regularizer function for parameter, e.g. L1/L2
class Regularizer {
public:
virtual void update(const VectorPtr vecs[], const ParameterConfig& paraConfig,
real learningRate, // learningrate from optimizer
int t0, // last occurence time
int t) const = 0; // current time
virtual ~Regularizer() {}
static Regularizer* get(const std::vector<ParameterType>& types,
const ParameterConfig& paraConfig);
};
// L1 Regularizer, |w|_1
class L1Regularizer : public Regularizer {
virtual void update(const VectorPtr vecs[], const ParameterConfig& paraConfig,
real learningRate, int t0, int t) const {
vecs[PARAMETER_VALUE]->applyL1(learningRate * paraConfig.learning_rate(),
paraConfig.decay_rate_l1() * (t - t0));
}
};
// L1 Lr Regularizer
class L1LrRegularizer : public Regularizer {
virtual void update(const VectorPtr vecs[], const ParameterConfig& paraConfig,
real learningRate, int t0, int t) const {
vecs[PARAMETER_VALUE]->applyL1(*vecs[PARAMETER_LEARNING_RATE],
learningRate * paraConfig.learning_rate(),
paraConfig.decay_rate_l1() * (t - t0));
}
};
// L2 Regularizer, |w|_2^2
class L2Regularizer : public Regularizer {
virtual void update(const VectorPtr vecs[], const ParameterConfig& paraConfig,
real learningRate, int t0, int t) const {
vecs[PARAMETER_VALUE]->applyL2(learningRate * paraConfig.learning_rate(),
paraConfig.decay_rate() * (t - t0));
}
};
// L2 Lr Regularizer
class L2LrRegularizer : public Regularizer {
virtual void update(const VectorPtr vecs[], const ParameterConfig& paraConfig,
real learningRate, int t0, int t) const {
vecs[PARAMETER_VALUE]->applyL2(*vecs[PARAMETER_LEARNING_RATE],
learningRate * paraConfig.learning_rate(),
paraConfig.decay_rate() * (t - t0));
}
};
// L1 + L2 Regularizer, |w|_1 + |w|_2^2
class L1L2Regularizer : public Regularizer {
virtual void update(const VectorPtr vecs[], const ParameterConfig& paraConfig,
real learningRate, int t0, int t) const {
vecs[PARAMETER_VALUE]->applyL1(learningRate * paraConfig.learning_rate(),
paraConfig.decay_rate_l1() * (t - t0));
vecs[PARAMETER_VALUE]->applyL2(learningRate * paraConfig.learning_rate(),
paraConfig.decay_rate() * (t - t0));
}
};
// L1 + L2 Lr Regularizer
class L1L2LrRegularizer : public Regularizer {
virtual void update(const VectorPtr vecs[], const ParameterConfig& paraConfig,
real learningRate, int t0, int t) const {
vecs[PARAMETER_VALUE]->applyL1(*vecs[PARAMETER_LEARNING_RATE],
learningRate * paraConfig.learning_rate(),
paraConfig.decay_rate_l1() * (t - t0));
vecs[PARAMETER_VALUE]->applyL2(*vecs[PARAMETER_LEARNING_RATE],
learningRate * paraConfig.learning_rate(),
paraConfig.decay_rate() * (t - t0));
}
};
} // namespace paddle