You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/pybind/op_function_generator.cc

431 lines
16 KiB

// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <fstream>
#include <iostream>
#include <string>
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/pybind/pybind.h"
#include "paddle/fluid/string/string_helper.h"
// NOTE(zhiqiu): Commonly, the inputs in auto-generated OP function are
// determined by the OP`s proto automatically, i.e., all the inputs registered
// in OpMaker.
// However, some OPs have dispensable inputs, which means the input can
// be none for some conditions. It is discovered that most dispensable inputs
// is not used in imperative mode, so we drop those inputs when generating OP
// functions. While, for very few OPs, the dispensable inputs are used, we
// need to manually specify them in this map.
std::map<std::string, std::set<std::string>> op_ins_map = {
{"layer_norm", {"X", "Scale", "Bias"}},
{"instance_norm", {"X", "Scale", "Bias"}},
{"gru_unit", {"Input", "HiddenPrev", "Weight", "Bias"}},
{"label_smooth", {"X", "PriorDist"}},
{"assign", {"X"}},
{"fake_quantize_dequantize_moving_average_abs_max",
{"X", "InScale", "InAccum", "InState"}},
{"nll_loss", {"X", "Label", "Weight"}},
{"bilinear_tensor_product", {"X", "Y", "Weight", "Bias"}},
{"gather", {"X", "Index", "Axis"}},
{"roi_pool", {"X", "ROIs", "RoisNum"}},
{"roi_align", {"X", "ROIs", "RoisNum"}},
{"collect_fpn_proposals",
{"MultiLevelRois", "MultiLevelScores", "MultiLevelRoIsNum"}},
{"distribute_fpn_proposals", {"FpnRois", "RoisNum"}},
{"warpctc", {"Logits", "Label", "LogitsLength", "LabelLength"}},
{"hierarchical_sigmoid",
{"X", "W", "Label", "PathTable", "PathCode", "Bias"}},
{"moving_average_abs_max_scale", {"X", "InAccum", "InState"}},
};
// NOTE(zhiqiu): Like op_ins_map.
// Commonly, the outputs in auto-generated OP function are determined by the
// OP`s proto automatically, i.e., all the outputs registered in OpMaker.
// However, some OPs have dispensable outputs, which means the output can
// be none for some conditions. It is discovered that most dispensable outputs
// is not used in imperative mode, so we drop those outputs when generating OP
// functions. While, for very few OPs, the dispensable outputs are used, we
// need to manually specify them in this map.
std::map<std::string, std::set<std::string>> op_outs_map = {
{"fake_quantize_dequantize_moving_average_abs_max",
{"Out", "OutScale", "OutAccum", "OutState"}},
{"batch_norm",
{"Y", "MeanOut", "VarianceOut", "SavedMean", "SavedVariance",
"ReserveSpace"}},
{"sync_batch_norm",
{"Y", "MeanOut", "VarianceOut", "SavedMean", "SavedVariance",
"ReserveSpace"}},
{"unique", {"Out", "Index", "Indices", "Counts"}},
{"generate_proposals", {"RpnRois", "RpnRoiProbs", "RpnRoisNum"}},
{"collect_fpn_proposals", {"FpnRois", "RoisNum"}},
{"matrix_nms", {"Out", "Index", "RoisNum"}},
{"distribute_fpn_proposals",
{"MultiFpnRois", "RestoreIndex", "MultiLevelRoIsNum"}},
{"moving_average_abs_max_scale", {"OutScale", "OutAccum", "OutState"}},
};
// NOTE(zhiqiu): Commonly, the outputs in auto-generated OP function are
// generated in C++ automatically.
// However, some OPs need to pass the outputs from Python instead of generating
// them in C++. There are mainly 2 reasons for that,
// (1) Optimizer OPs need to update the input param in-place, like sgd.
// So they need to pass the output which is same as input param.
// (2) Very few python APIs has out in their arguments, like fill_constant.
// So they need to pass the python output to C++.
// Actually, this is not a good design, since it may break the SSA graph,
// especially in declarative mode.
// For those OPs, we need to manually specify the outs need to pass in this map.
std::map<std::string, std::set<std::string>> op_passing_outs_map = {
{"sgd", {"ParamOut"}},
{"adam",
{"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut"}},
{"momentum", {"ParamOut", "VelocityOut"}},
{"batch_norm", {"MeanOut", "VarianceOut"}},
{"sync_batch_norm", {"MeanOut", "VarianceOut"}},
{"accuracy", {"Correct", "Total"}},
{"fill_constant", {"Out"}},
{"matmul", {"Out"}},
{"c_broadcast", {"Out"}},
{"c_allreduce_sum", {"Out"}},
{"c_allreduce_max", {"Out"}},
{"c_allreduce_min", {"Out"}},
{"c_allreduce_prod", {"Out"}},
{"c_reduce_sum", {"Out"}},
{"c_reduce_max", {"Out"}},
{"c_reduce_min", {"Out"}},
{"c_reduce_prod", {"Out"}},
{"c_reduce", {"Out"}},
{"c_allgather", {"Out"}},
{"c_scatter", {"Out"}},
{"barrier", {"Out"}},
{"fake_quantize_dequantize_moving_average_abs_max",
{"Out", "OutScale", "OutAccum", "OutState"}},
{"fake_quantize_dequantize_abs_max", {"Out", "OutScale"}},
{"fake_channel_wise_quantize_dequantize_abs_max", {"Out", "OutScale"}},
{"check_finite_and_unscale", {"Out", "FoundInfinite"}},
{"update_loss_scaling",
{"Out", "LossScaling", "OutGoodSteps", "OutBadSteps"}},
{"moving_average_abs_max_scale", {"OutScale", "OutAccum", "OutState"}},
};
// clang-format off
const char* OUT_INITIALIZER_TEMPLATE =
R"({"%s", {std::shared_ptr<imperative::VarBase>(new imperative::VarBase(tracer->GenerateUniqueName()))}})";
const char* OUT_DUPLICABLE_INITIALIZER_TEMPLATE = R"({"%s", ConstructDuplicableOutput(%s)})";
const char* INPUT_INITIALIZER_TEMPLATE = R"({"%s", {%s}})";
const char* INPUT_LIST_INITIALIZER_TEMPLATE = R"({"%s", %s})";
const char* INPUT_INITIALIZER_TEMPLATE_WITH_NULL = R"(
if (%s != nullptr) {
ins["%s"] = {%s};
}
)";
const char* INPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST = R"(
if (%s.size() != 0) {
ins["%s"] = %s;
}
)";
const char* OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL = R"(
outs["%s"] = {%s};
)";
const char* OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST = R"(
outs["%s"] = %s;
)";
// if inputs is list, no need {}
const char* ARG_OUT_NUM = R"(%sNum)";
const char* ARG_OUT_NUM_TYPE = R"(size_t )";
const char* IN_VAR_TYPE = R"(py::handle)";
const char* IN_VAR_LIST_TYPE = R"(py::handle)";
const char* OUT_VAR_TYPE = R"(std::shared_ptr<imperative::VarBase>)";
const char* OUT_VAR_LIST_TYPE = R"(std::vector<std::shared_ptr<imperative::VarBase>>)";
const char* CAST_VAR_TEMPLATE = R"(
auto %s = CastPyHandleToVarBase("%s", "%s", %d, %s);)";
const char* CAST_VAR_LIST_TEMPLATE = R"(
auto %s = CastPyHandleToVarBaseList("%s", "%s", %d, %s);)";
const char* ARG_TEMPLATE = R"(const %s& %s)";
const char* RETURN_TUPLE_TYPE = R"(std::tuple<%s>)";
const char* RETURN_TYPE = R"(%s)";
const char* RETURN_TUPLE_TEMPLATE = R"(std::make_tuple(%s))";
const char* RETURN_LIST_TEMPLATE = R"(outs["%s"])";
const char* RETURN_TEMPLATE = R"(outs["%s"][0])";
const char* FUNCTION_ARGS = R"(%s, const py::args& args)";
const char* FUNCTION_ARGS_NO_INPUT = R"(const py::args& args)";
const char* OP_FUNCTION_TEMPLATE =
R"(
%s %s(%s)
{
%s
framework::AttributeMap attrs;
ConstructAttrMapFromPyArgs("%s", %d, &attrs, args);
{
py::gil_scoped_release release;
auto tracer = imperative::GetCurrentTracer();
imperative::NameVarBaseMap outs = %s;
imperative::NameVarBaseMap ins = %s;
%s
tracer->TraceOp("%s", ins, outs, attrs);
return %s;
}
})";
const char* PYBIND_ITEM_TEMPLATE = R"( %s.def("%s", &%s);)";
// clang-format on
static inline bool FindInsMap(const std::string& op_type,
const std::string& in_name) {
return op_ins_map[op_type].count(in_name);
}
static inline bool FindOutsMap(const std::string& op_type,
const std::string& out_name) {
return op_outs_map[op_type].count(out_name);
}
static inline bool FindPassingOutsMap(const std::string& op_type,
const std::string& out_name) {
return op_passing_outs_map[op_type].count(out_name);
}
static inline std::string TempName(const std::string& name) {
return name + '_';
}
static std::tuple<std::vector<std::string>, std::vector<std::string>>
GenerateOpFunctions(const std::string& module_name) {
auto& op_info_map = paddle::framework::OpInfoMap::Instance().map();
std::vector<std::string> op_function_list, bind_function_list;
auto& all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
for (auto& pair : op_info_map) {
auto& op_info = pair.second;
auto op_proto = op_info.proto_;
if (op_proto == nullptr) {
continue;
}
auto& op_type = op_proto->type();
// Skip ooerator which is not inherit form OperatorWithKernel, like while,
// since only OperatorWithKernel can run in dygraph mode.
if (!all_kernels.count(op_type)) {
continue;
}
std::string input_args = "";
std::string ins_initializer = "{";
std::string ins_initializer_with_null = "";
std::string py_arg = "";
int arg_idx = 0;
int input_args_num = 0;
std::string ins_cast_str = "";
for (auto& input : op_proto->inputs()) {
auto& in_name = input.name();
// skip those dispensable inputs, like ResidualData in conv2d
if (input.dispensable() && !FindInsMap(op_type, in_name)) {
continue;
}
const auto in_type = input.duplicable() ? IN_VAR_LIST_TYPE : IN_VAR_TYPE;
auto input_arg =
paddle::string::Sprintf(ARG_TEMPLATE, in_type, TempName(in_name));
input_args += input_arg;
input_args += ",";
input_args_num++;
const auto in_cast_type =
input.duplicable() ? CAST_VAR_LIST_TEMPLATE : CAST_VAR_TEMPLATE;
ins_cast_str +=
paddle::string::Sprintf(in_cast_type, in_name, op_type, in_name,
arg_idx++, TempName(in_name));
if (input.dispensable()) {
const auto in_template = input.duplicable()
? INPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST
: INPUT_INITIALIZER_TEMPLATE_WITH_NULL;
ins_initializer_with_null +=
paddle::string::Sprintf(in_template, in_name, in_name, in_name);
} else {
const auto in_template = input.duplicable()
? INPUT_LIST_INITIALIZER_TEMPLATE
: INPUT_INITIALIZER_TEMPLATE;
ins_initializer +=
paddle::string::Sprintf(in_template, in_name, in_name);
ins_initializer += ",";
}
}
if (ins_initializer.back() == ',') {
ins_initializer.pop_back();
}
ins_initializer += "}";
if (input_args.back() == ',') {
input_args.pop_back();
}
// Generate outs initializer
std::string outs_initializer = "{";
std::string outs_initializer_with_null = "";
std::string return_type = "";
std::string return_str = "";
int outs_num = 0;
for (auto& output : op_proto->outputs()) {
auto& out_name = output.name();
// skip those dispensable oututs
if (output.dispensable() && !FindOutsMap(op_type, out_name)) {
continue;
}
const auto out_type =
output.duplicable() ? OUT_VAR_LIST_TYPE : OUT_VAR_TYPE;
const auto return_template =
output.duplicable() ? RETURN_LIST_TEMPLATE : RETURN_TEMPLATE;
if (FindPassingOutsMap(op_type, out_name)) {
if (input_args != "") {
input_args += ",";
}
input_args += out_type;
input_args += out_name;
input_args_num++;
if (output.dispensable()) {
const auto out_template =
output.duplicable() ? OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST
: OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL;
outs_initializer_with_null +=
paddle::string::Sprintf(out_template, out_name, out_name);
} else {
const auto out_template = output.duplicable()
? INPUT_LIST_INITIALIZER_TEMPLATE
: INPUT_INITIALIZER_TEMPLATE;
outs_initializer +=
paddle::string::Sprintf(out_template, out_name, out_name);
outs_initializer += ",";
}
} else {
// There are few Operators that have duplicable output, like `Out` in
// split op. We need to specify the number of variables for the
// duplicable output, as the argument OutNum;
if (output.duplicable()) {
if (input_args != "") {
input_args += ",";
}
auto out_num_str = paddle::string::Sprintf(ARG_OUT_NUM, out_name);
input_args += ARG_OUT_NUM_TYPE;
input_args += out_num_str;
input_args_num++;
outs_initializer += paddle::string::Sprintf(
OUT_DUPLICABLE_INITIALIZER_TEMPLATE, out_name, out_num_str);
} else {
outs_initializer +=
paddle::string::Sprintf(OUT_INITIALIZER_TEMPLATE, out_name);
}
outs_initializer += ",";
}
return_type += out_type;
return_type += ",";
return_str += paddle::string::Sprintf(return_template, out_name);
return_str += ",";
outs_num += 1;
}
if (outs_initializer.back() == ',') {
outs_initializer.pop_back();
return_type.pop_back();
return_str.pop_back();
}
outs_initializer += "}";
if (outs_num == 0) {
return_type = "void";
}
if (outs_num > 1) {
return_str = paddle::string::Sprintf(RETURN_TUPLE_TEMPLATE, return_str);
return_type = paddle::string::Sprintf(RETURN_TUPLE_TYPE, return_type);
}
std::string function_args = "";
if (input_args == "") {
function_args = FUNCTION_ARGS_NO_INPUT;
} else {
function_args = paddle::string::Sprintf(FUNCTION_ARGS, input_args);
}
std::string func_name = "imperative_" + op_type;
// generate op funtcion body
auto op_function_str = paddle::string::Sprintf(
OP_FUNCTION_TEMPLATE, return_type, func_name, function_args,
ins_cast_str, op_type, input_args_num, outs_initializer,
ins_initializer, ins_initializer_with_null + outs_initializer_with_null,
op_type, return_str);
// generate pybind item
auto bind_function_str = paddle::string::Sprintf(
PYBIND_ITEM_TEMPLATE, module_name, op_type, func_name);
op_function_list.emplace_back(std::move(op_function_str));
bind_function_list.emplace_back(std::move(bind_function_str));
}
return std::make_tuple(op_function_list, bind_function_list);
}
int main(int argc, char* argv[]) {
if (argc != 2) {
std::cerr << "argc must be 2" << std::endl;
return -1;
}
std::vector<std::string> headers{"\"paddle/fluid/imperative/tracer.h\""};
std::ofstream out(argv[1], std::ios::out);
out << "#pragma once\n\n";
for (auto& header : headers) {
out << "#include " + header + "\n";
}
auto op_funcs = GenerateOpFunctions("m");
out << "namespace py = pybind11;"
<< "\n";
out << "namespace paddle {\n"
<< "namespace pybind {\n";
out << paddle::string::join_strings(std::get<0>(op_funcs), '\n');
out << "\n\n";
out << "inline void BindOpFunctions(pybind11::module *module) {\n"
<< " auto m = module->def_submodule(\"ops\");\n\n";
out << paddle::string::join_strings(std::get<1>(op_funcs), '\n');
out << "\n";
out << "}\n\n"
<< "} // namespace pybind\n"
<< "} // namespace paddle\n";
out.close();
return 0;
}