You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
153 lines
5.5 KiB
153 lines
5.5 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <memory>
|
|
#include "paddle/fluid/operators/concat_op.h"
|
|
#include "paddle/fluid/platform/mkldnn_helper.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::DataLayout;
|
|
using framework::Tensor;
|
|
using mkldnn::memory;
|
|
using mkldnn::primitive;
|
|
using mkldnn::concat;
|
|
using mkldnn::stream;
|
|
using platform::to_void_cast;
|
|
|
|
static void EnforceLayouts(const std::vector<const Tensor*> inputs) {
|
|
for (auto* input : inputs) {
|
|
const bool is_layout_correct = input->layout() == DataLayout::kMKLDNN;
|
|
const bool is_format_defined =
|
|
input->format() != memory::format::format_undef;
|
|
PADDLE_ENFORCE(is_layout_correct && is_format_defined,
|
|
"Wrong layout/format set for Input tensor");
|
|
}
|
|
}
|
|
|
|
static memory::primitive_desc CreateMemPrimDesc(const Tensor& input,
|
|
const mkldnn::engine& engine) {
|
|
constexpr auto data_type = mkldnn::memory::f32;
|
|
const auto dims = paddle::framework::vectorize2int(input.dims());
|
|
const auto format = input.format();
|
|
auto description = memory::desc(dims, data_type, format);
|
|
auto mem_prim_desc = memory::primitive_desc(description, engine);
|
|
return mem_prim_desc;
|
|
}
|
|
|
|
static mkldnn::memory::format GetDstMemFormat(
|
|
const concat::primitive_desc& concat_pd) {
|
|
return (memory::format)concat_pd.dst_primitive_desc().desc().data.format;
|
|
}
|
|
|
|
static platform::CPUPlace GetCpuPlace(
|
|
const paddle::framework::ExecutionContext& ctx) {
|
|
auto place = ctx.GetPlace();
|
|
PADDLE_ENFORCE(paddle::platform::is_cpu_place(place),
|
|
"It must use CPUPlace.");
|
|
return boost::get<platform::CPUPlace>(place);
|
|
}
|
|
|
|
static const mkldnn::engine& GetMKLDNNEngine(
|
|
const paddle::framework::ExecutionContext& ctx) {
|
|
auto& dev_ctx = ctx.template device_context<platform::MKLDNNDeviceContext>();
|
|
return dev_ctx.GetEngine();
|
|
}
|
|
|
|
template <typename T>
|
|
class ConcatPrimitiveFactory {
|
|
public:
|
|
concat::primitive_desc CreateConcatPrimDescriptor(
|
|
const std::vector<const Tensor*> multi_input, Tensor* output,
|
|
int concat_axis, const mkldnn::engine& mkldnn_engine) {
|
|
CreateSourcesDescriptors(multi_input, mkldnn_engine);
|
|
auto dst_desc = CreateDstMemDescriptor(output);
|
|
return concat::primitive_desc(dst_desc, concat_axis, srcs_pd);
|
|
}
|
|
|
|
concat CreateConcatPrimitive(const concat::primitive_desc& concat_pd,
|
|
Tensor* output, platform::CPUPlace place) {
|
|
CreateSourcePrimitiveAts();
|
|
dst_mem = CreateDstMemory(concat_pd, output, place);
|
|
return concat(concat_pd, inputs, dst_mem.get());
|
|
}
|
|
|
|
private:
|
|
memory::desc CreateDstMemDescriptor(Tensor* output) {
|
|
auto dst_dims = paddle::framework::vectorize2int(output->dims());
|
|
return memory::desc(dst_dims, platform::MKLDNNGetDataType<T>(),
|
|
memory::format::any);
|
|
}
|
|
|
|
mkldnn::memory CreateDstMemory(const concat::primitive_desc& concat_pd,
|
|
Tensor* output, platform::CPUPlace place) {
|
|
return memory(concat_pd.dst_primitive_desc(),
|
|
output->mutable_data<T>(place));
|
|
}
|
|
|
|
void CreateSourcesDescriptors(const std::vector<const Tensor*> multi_input,
|
|
const mkldnn::engine& mkldnn_engine) {
|
|
for (size_t i = 0; i < multi_input.size(); i++) {
|
|
auto mem_prim_desc = CreateMemPrimDesc(*multi_input[i], mkldnn_engine);
|
|
srcs_pd.push_back(mem_prim_desc);
|
|
srcs.push_back(
|
|
memory(mem_prim_desc, to_void_cast(multi_input[i]->data<T>())));
|
|
}
|
|
}
|
|
|
|
void CreateSourcePrimitiveAts() {
|
|
inputs.reserve(srcs.size());
|
|
for (size_t i = 0; i < srcs.size(); i++) {
|
|
inputs.push_back(srcs[i]);
|
|
}
|
|
}
|
|
|
|
private:
|
|
std::vector<memory::primitive_desc> srcs_pd;
|
|
std::vector<memory> srcs;
|
|
std::vector<primitive::at> inputs;
|
|
boost::optional<memory> dst_mem; // TODO(mgallus): change to std::optional
|
|
}; // upon introduction of C++17 to paddle
|
|
|
|
template <typename T>
|
|
class ConcatMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
|
|
auto place = GetCpuPlace(ctx);
|
|
const auto& mkldnn_engine = GetMKLDNNEngine(ctx);
|
|
|
|
auto multi_input = ctx.MultiInput<Tensor>("X");
|
|
EnforceLayouts(multi_input);
|
|
Tensor* output = ctx.Output<Tensor>("Out");
|
|
int64_t concat_axis = static_cast<int64_t>(ctx.Attr<int>("axis"));
|
|
|
|
ConcatPrimitiveFactory<T> prim_creator;
|
|
auto concat_pd = prim_creator.CreateConcatPrimDescriptor(
|
|
multi_input, output, static_cast<int>(concat_axis), mkldnn_engine);
|
|
auto concat = prim_creator.CreateConcatPrimitive(concat_pd, output, place);
|
|
stream(stream::kind::eager).submit({concat}).wait();
|
|
|
|
output->set_layout(DataLayout::kMKLDNN);
|
|
output->set_format(GetDstMemFormat(concat_pd));
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP_KERNEL(concat, MKLDNN, ::paddle::platform::CPUPlace,
|
|
ops::ConcatMKLDNNOpKernel<float>)
|