You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1301 lines
45 KiB
1301 lines
45 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import paddle
|
|
from paddle.distributed.fleet.proto import distributed_strategy_pb2
|
|
from paddle.fluid.framework import Variable, set_flags, core
|
|
from paddle.fluid.wrapped_decorator import wrap_decorator
|
|
import google.protobuf.text_format
|
|
import google.protobuf
|
|
|
|
__all__ = ["DistributedStrategy"]
|
|
|
|
non_auto_func_called = True
|
|
|
|
|
|
def __non_auto_func_called__(func):
|
|
def __impl__(*args, **kwargs):
|
|
global non_auto_func_called
|
|
non_auto_func_called = False
|
|
return func(*args, **kwargs)
|
|
|
|
return __impl__
|
|
|
|
|
|
is_strict_auto = wrap_decorator(__non_auto_func_called__)
|
|
|
|
|
|
def get_msg_dict(msg):
|
|
res_dict = {}
|
|
fields = msg.DESCRIPTOR.fields
|
|
for f in fields:
|
|
res_dict[f.name] = getattr(msg, f.name)
|
|
return res_dict
|
|
|
|
|
|
def assign_configs_value(msg, config):
|
|
fields = msg.DESCRIPTOR.fields
|
|
for key in config:
|
|
for f in fields:
|
|
if key == f.name:
|
|
if f.label == 3:
|
|
getattr(msg, f.name).extend(config[f.name])
|
|
elif f.label == 1 or f.label == 2:
|
|
setattr(msg, f.name, config[f.name])
|
|
|
|
|
|
def check_configs_key(msg, config, field_name):
|
|
key_list = msg.DESCRIPTOR.fields_by_name.keys()
|
|
for key in config:
|
|
assert key in key_list, "key:{} not in {}".format(key, field_name)
|
|
|
|
|
|
class DistributedJobInfo(object):
|
|
"""
|
|
DistributedJobInfo will serialize all distributed training information
|
|
Just for inner use: 1) debug 2) replicate experiments
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.job_info = distributed_strategy_pb2.DistributedJobInfo()
|
|
|
|
def _set_worker_num(self, worker_num):
|
|
self.job_info.worker_num = worker_num
|
|
|
|
def _set_server_num(self, server_num):
|
|
self.job_info.server_num = server_num
|
|
|
|
def _set_worker_ips(self, worker_ips):
|
|
self.job_info.worker_ips.extend(worker_ips)
|
|
|
|
def _set_server_endpoints(self, server_endpoints):
|
|
self.job_info.server_endpoints.extend(server_endpoints)
|
|
|
|
def _set_origin_startup(self, origin_startup_prog):
|
|
self.job_info.origin_startup = str(origin_startup_prog)
|
|
|
|
def _set_origin_main(self, origin_main_prog):
|
|
self.job_info.origin_main = str(origin_main_prog)
|
|
|
|
def _distributed_main(self, distributed_main_prog):
|
|
self.job_info.distributed_main = str(distributed_main_prog)
|
|
|
|
def _optimizer_name(self, optimizer_name):
|
|
self.job_info.optimizer_name = optimizer_name
|
|
|
|
def _set_distributed_strategy(self, dist_strategy):
|
|
self.job_info.strategy = dist_strategy
|
|
|
|
|
|
class DistributedStrategy(object):
|
|
__lock_attr = False
|
|
|
|
def __init__(self):
|
|
"""
|
|
DistributedStrategy is the main configuration entry for distributed training of Paddle.
|
|
All of the distributed training configurations can be configured in DistributedStrategy,
|
|
such as automatic mixed precision (AMP), Layer-wise Adaptive Rate Scaling (LARS),
|
|
asynchronous update parameter server(ASGD), etc.
|
|
|
|
DistributedStrategy can be serialized into protobuf file or deserialized from protobuf file
|
|
|
|
Users who run local training usually configure BuildStrategy and ExecutionStrategy, and
|
|
DistributedStrategy supports configurations from BuildStrategy and ExecutionStrategy
|
|
|
|
"""
|
|
self.strategy = distributed_strategy_pb2.DistributedStrategy()
|
|
self.__lock_attr = True
|
|
|
|
def __setattr__(self, key, value):
|
|
if self.__lock_attr and not hasattr(self, key):
|
|
raise TypeError("%s is not a attribute of %s" %
|
|
(key, self.__class__.__name__))
|
|
object.__setattr__(self, key, value)
|
|
|
|
def save_to_prototxt(self, output):
|
|
"""
|
|
Serialize current DistributedStrategy to string and save to output file
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.dgc = True
|
|
strategy.recompute = True
|
|
strategy.recompute_configs = {"checkpoints": ["x"]}
|
|
strategy.save_to_prototxt("dist_strategy.prototxt")
|
|
"""
|
|
with open(output, "w") as fout:
|
|
fout.write(str(self.strategy))
|
|
|
|
def load_from_prototxt(self, pb_file):
|
|
"""
|
|
Load from prototxt file for DistributedStrategy initialization
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.load_from_prototxt("dist_strategy.prototxt")
|
|
"""
|
|
with open(pb_file, 'r') as f:
|
|
self.strategy = google.protobuf.text_format.Merge(
|
|
str(f.read()), self.strategy)
|
|
|
|
@property
|
|
def execution_strategy(self):
|
|
"""
|
|
Configure ExecutionStrategy for DistributedStrategy
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle
|
|
exe_strategy = paddle.fluid.ExecutionStrategy()
|
|
exe_strategy.num_threads = 10
|
|
exe_strategy.num_iteration_per_drop_scope = 10
|
|
exe_strategy.num_iteration_per_run = 10
|
|
|
|
strategy = paddle.distributed.fleet.DistributedStrategy()
|
|
strategy.execution_strategy = exe_strategy
|
|
"""
|
|
execution_strategy = paddle.fluid.ExecutionStrategy()
|
|
fields = self.strategy.execution_strategy.DESCRIPTOR.fields
|
|
for f in fields:
|
|
setattr(execution_strategy, f.name,
|
|
getattr(self.strategy.execution_strategy, f.name))
|
|
return execution_strategy
|
|
|
|
@execution_strategy.setter
|
|
@is_strict_auto
|
|
def execution_strategy(self, strategy):
|
|
fields = self.strategy.execution_strategy.DESCRIPTOR.fields
|
|
for f in fields:
|
|
setattr(self.strategy.execution_strategy, f.name,
|
|
getattr(strategy, f.name))
|
|
|
|
@property
|
|
def build_strategy(self):
|
|
"""
|
|
Configure BuildStrategy for DistributedStrategy
|
|
Note that the properties of BuildStrategy are valid in DistributedStrategy
|
|
only if the property is non-distributed strategy.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle
|
|
build_strategy = paddle.fluid.BuildStrategy()
|
|
build_strategy.enable_sequential_execution = True
|
|
build_strategy.fuse_elewise_add_act_ops = True
|
|
build_strategy.fuse_bn_act_ops = True
|
|
build_strategy.enable_auto_fusion = True
|
|
build_strategy.fuse_relu_depthwise_conv = True
|
|
build_strategy.fuse_broadcast_ops = True
|
|
build_strategy.fuse_all_optimizer_ops = True
|
|
build_strategy.enable_inplace = True
|
|
|
|
strategy = paddle.distributed.fleet.DistributedStrategy()
|
|
strategy.build_strategy = build_strategy
|
|
"""
|
|
|
|
build_strategy = paddle.fluid.BuildStrategy()
|
|
fields = self.strategy.build_strategy.DESCRIPTOR.fields
|
|
for f in fields:
|
|
setattr(build_strategy, f.name,
|
|
getattr(self.strategy.build_strategy, f.name))
|
|
return build_strategy
|
|
|
|
@build_strategy.setter
|
|
@is_strict_auto
|
|
def build_strategy(self, strategy):
|
|
fields = self.strategy.build_strategy.DESCRIPTOR.fields
|
|
for f in fields:
|
|
if f.label == 1 or f.label == 2: # optional and required field
|
|
setattr(self.strategy.build_strategy, f.name,
|
|
getattr(strategy, f.name))
|
|
elif f.label == 3: # repeated field
|
|
getattr(self.strategy.build_strategy,
|
|
f.name).extend(getattr(strategy, f.name))
|
|
|
|
@property
|
|
def a_sync(self):
|
|
"""
|
|
Indicating whether we are using asynchronous stocastic gradient descent updates
|
|
for training. This property is valid when we are using parameter server training,
|
|
which is implied by setting approperate RoleMaker
|
|
Default value: True
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
role_maker = fleet.PaddleCloudRoleMaker()
|
|
fleet.init(role_maker)
|
|
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.a_sync = True # by default this is True
|
|
|
|
# code block for defining loss and local optimizer
|
|
# sgd = fleet.distributed_optimizer(optimizer, strategy)
|
|
"""
|
|
return self.strategy.a_sync
|
|
|
|
@a_sync.setter
|
|
@is_strict_auto
|
|
def a_sync(self, flag):
|
|
if isinstance(flag, bool):
|
|
self.strategy.a_sync = flag
|
|
self.a_sync_configs = {"k_steps": 0}
|
|
else:
|
|
raise ValueError(
|
|
"The type of `flag` is invalid, expected type is bool, but received %s".
|
|
format(type(flag)))
|
|
|
|
@property
|
|
def a_sync_configs(self):
|
|
"""
|
|
Set a_sync update configurations. In general, asynchronous parameter server
|
|
training has serveral configurable settings that can be configured through
|
|
a dict.
|
|
|
|
**Notes**:
|
|
k_step(int): number of local optimization updates before communication
|
|
|
|
max_merge_var_num(int): maximum number of merged gradients before communication
|
|
|
|
send_queue_size(int): a buffer size of worker communication
|
|
|
|
independent_recv_thread(bool): if we are using independent recv thread for communication
|
|
|
|
thread_pool_size(int): number of thread pool
|
|
|
|
send_wait_times(int): waiting time for sending gradients
|
|
|
|
runtime_split_send_recv(bool): if we are using Tensor split for send and recv during runtime
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
role_maker = fleet.PaddleCloudRoleMaker()
|
|
fleet.init(role_maker)
|
|
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.a_sync = True # by default this is True
|
|
configs = {"k_steps": 1024, "send_queue_size": 32}
|
|
strategy.a_sync_configs = configs
|
|
|
|
# code block for defining loss and local optimizer
|
|
# sgd = fleet.distributed_optimizer(optimizer, strategy)
|
|
|
|
"""
|
|
return get_msg_dict(self.strategy.a_sync_configs)
|
|
|
|
@a_sync_configs.setter
|
|
@is_strict_auto
|
|
def a_sync_configs(self, configs):
|
|
check_configs_key(self.strategy.a_sync_configs, configs,
|
|
"a_sync_configs")
|
|
assign_configs_value(self.strategy.a_sync_configs, configs)
|
|
|
|
@property
|
|
def amp(self):
|
|
"""
|
|
Indicating whether we are using automatic mixed precision training
|
|
Default Value: False
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.amp = True # by default this is false
|
|
|
|
"""
|
|
return self.strategy.amp
|
|
|
|
@amp.setter
|
|
@is_strict_auto
|
|
def amp(self, flag):
|
|
if isinstance(flag, bool):
|
|
self.strategy.amp = flag
|
|
else:
|
|
print("WARNING: amp should have value of bool type")
|
|
|
|
@property
|
|
def amp_configs(self):
|
|
"""
|
|
Set automatic mixed precision training configurations. In general, amp has serveral configurable
|
|
settings that can be configured through a dict.
|
|
|
|
**Notes**:
|
|
init_loss_scaling(float): The initial loss scaling factor. Default 32768.
|
|
|
|
use_dynamic_loss_scaling(bool): Whether to use dynamic loss scaling. Default True.
|
|
|
|
incr_every_n_steps(int): Increases loss scaling every n consecutive steps with finite gradients. Default 1000.
|
|
|
|
decr_every_n_nan_or_inf(int): Decreases loss scaling every n accumulated steps with nan or inf gradients. Default 2.
|
|
|
|
incr_ratio(float): The multiplier to use when increasing the loss scaling. Default 2.0.
|
|
|
|
decr_ratio(float): The less-than-one-multiplier to use when decreasing the loss scaling. Default 0.5.
|
|
|
|
custom_white_list(list[str]): Users' custom white list which always execution fp16.
|
|
|
|
custom_black_list(list[str]): Users' custom black list which forbidden execution fp16.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.amp = True
|
|
strategy.amp_configs = {
|
|
"init_loss_scaling": 32768,
|
|
"custom_white_list": ['conv2d']}
|
|
"""
|
|
return get_msg_dict(self.strategy.amp_configs)
|
|
|
|
@amp_configs.setter
|
|
@is_strict_auto
|
|
def amp_configs(self, configs):
|
|
check_configs_key(self.strategy.amp_configs, configs, "amp_configs")
|
|
assign_configs_value(self.strategy.amp_configs, configs)
|
|
|
|
@property
|
|
def recompute(self):
|
|
"""
|
|
Indicating whether we are using forward recomputation for memory optimization
|
|
Default value: False
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.recompute = True
|
|
# suppose x and y are names of checkpoint tensors for recomputation
|
|
strategy.recompute_configs = {"checkpoints": ["x", "y"]}
|
|
"""
|
|
return self.strategy.recompute
|
|
|
|
@property
|
|
def sync_nccl_allreduce(self):
|
|
"""
|
|
Indicating whether we are using synchronized all reduce in each communication thread
|
|
We note that system overhead is usually lower when sync_nccl_allreduce = True
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.sync_nccl_allreduce = True
|
|
"""
|
|
return self.strategy.sync_nccl_allreduce
|
|
|
|
@sync_nccl_allreduce.setter
|
|
@is_strict_auto
|
|
def sync_nccl_allreduce(self, flag):
|
|
if isinstance(flag, bool):
|
|
self.strategy.sync_nccl_allreduce = flag
|
|
else:
|
|
print("WARNING: sync_nccl_allreduce should have value of bool type")
|
|
|
|
@property
|
|
def use_hierarchical_allreduce(self):
|
|
"""
|
|
Indicating whether we are using hierarchical allreduce in collective communication
|
|
Hierarchical allreduce often does allreduce within a certain node group and then do
|
|
allreduce among the leaders of each group
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.use_hierarchical_allreduce = True
|
|
"""
|
|
return self.strategy.use_hierarchical_allreduce
|
|
|
|
@use_hierarchical_allreduce.setter
|
|
@is_strict_auto
|
|
def use_hierarchical_allreduce(self, flag):
|
|
if isinstance(flag, bool):
|
|
self.strategy.use_hierarchical_allreduce = flag
|
|
else:
|
|
print(
|
|
"WARNING: use_hierarchical_allreduce should have value of bool type"
|
|
)
|
|
|
|
@property
|
|
def hierarchical_allreduce_inter_nranks(self):
|
|
"""
|
|
Number of ranks for low level node groups in hierarchical allreduce
|
|
Default value: number of GPU cards on each single GPU machine
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.hierarchical_allreduce_inter_nranks = 8
|
|
"""
|
|
return self.strategy.hierarchical_allreduce_inter_nranks
|
|
|
|
@hierarchical_allreduce_inter_nranks.setter
|
|
@is_strict_auto
|
|
def hierarchical_allreduce_inter_nranks(self, value):
|
|
if isinstance(value, int):
|
|
self.strategy.hierarchical_allreduce_inter_nranks = value
|
|
else:
|
|
print(
|
|
"WARNING: hierarchical_allreduce_inter_nranks should have value of int type"
|
|
)
|
|
|
|
@property
|
|
def sync_batch_norm(self):
|
|
"""
|
|
Indicating whether we are using sync_batch_norm to do synchronous batch normalization among all training nodes.
|
|
|
|
Default value: False
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.sync_batch_norm = True
|
|
"""
|
|
|
|
return self.strategy.sync_batch_norm
|
|
|
|
@sync_batch_norm.setter
|
|
@is_strict_auto
|
|
def sync_batch_norm(self, flag):
|
|
if isinstance(flag, bool):
|
|
self.strategy.sync_batch_norm = flag
|
|
else:
|
|
print("WARNING: sync_batch_norm should have value of bool type")
|
|
|
|
@property
|
|
def fuse_all_reduce_ops(self):
|
|
"""
|
|
Indicating whether we are using fuse_all_reduce_ops for gradient fusion during backward phase of training
|
|
Default value: True
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.fuse_all_reduce_ops = False
|
|
"""
|
|
return self.strategy.fuse_all_reduce_ops
|
|
|
|
@fuse_all_reduce_ops.setter
|
|
@is_strict_auto
|
|
def fuse_all_reduce_ops(self, flag):
|
|
if isinstance(flag, bool):
|
|
self.strategy.fuse_all_reduce_ops = flag
|
|
else:
|
|
print("WARNING: fuse_all_reduce_ops should have value of bool type")
|
|
|
|
@property
|
|
def fuse_grad_size_in_MB(self):
|
|
"""
|
|
Specifying the size of gradient to fuse in Mega-Bytes
|
|
|
|
Default value: 32
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.fuse_grad_size_in_MB = 50
|
|
"""
|
|
return self.strategy.fuse_grad_size_in_MB
|
|
|
|
@fuse_grad_size_in_MB.setter
|
|
@is_strict_auto
|
|
def fuse_grad_size_in_MB(self, value):
|
|
if isinstance(value, int):
|
|
self.strategy.fuse_grad_size_in_MB = value
|
|
else:
|
|
print("WARNING: fuse_grad_size_in_MB should have value of int type")
|
|
|
|
@property
|
|
def _fuse_grad_size_in_TFLOPS(self):
|
|
return self.strategy.fuse_grad_size_in_TFLOPS
|
|
|
|
@_fuse_grad_size_in_TFLOPS.setter
|
|
@is_strict_auto
|
|
def _fuse_grad_size_in_TFLOPS(self, value):
|
|
if isinstance(value, float):
|
|
self.strategy.fuse_grad_size_in_TFLOPS = value
|
|
else:
|
|
print(
|
|
"WARNING: fuse_grad_size_in_TFLOPS should have value of float type"
|
|
)
|
|
|
|
@property
|
|
def nccl_comm_num(self):
|
|
"""
|
|
Specifying the number of NCCL communicator
|
|
|
|
Default value: 1
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.nccl_comm_num = 2
|
|
"""
|
|
|
|
return self.strategy.nccl_comm_num
|
|
|
|
@nccl_comm_num.setter
|
|
@is_strict_auto
|
|
def nccl_comm_num(self, value):
|
|
if isinstance(value, int):
|
|
self.strategy.nccl_comm_num = value
|
|
else:
|
|
print("WARNING: nccl_comm_num should have value of int type")
|
|
|
|
@recompute.setter
|
|
@is_strict_auto
|
|
def recompute(self, flag):
|
|
if isinstance(flag, bool):
|
|
self.strategy.recompute = flag
|
|
else:
|
|
print("WARNING: recompute should have value of bool type")
|
|
|
|
@property
|
|
def recompute_configs(self):
|
|
"""
|
|
Set recompute configurations. In general, the recompute strategy of current
|
|
implementation should have some manually assign checkpoints
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.recompute = True
|
|
strategy.recompute_configs = {"checkpoints": ["x", "y"]}
|
|
|
|
"""
|
|
return get_msg_dict(self.strategy.recompute_configs)
|
|
|
|
@recompute_configs.setter
|
|
@is_strict_auto
|
|
def recompute_configs(self, configs):
|
|
check_configs_key(self.strategy.recompute_configs, configs,
|
|
"checkpoint_configs")
|
|
assign_configs_value(self.strategy.recompute_configs, configs)
|
|
|
|
@property
|
|
def pipeline(self):
|
|
"""
|
|
Indicating whether we are using pipeline parallelism for distributed training.
|
|
Current implementation mainly focus on single GPU machine pipeline parallelism and
|
|
data parallelism across GPU machine. The pipeline information is indicated through
|
|
device_guard information in user-defined program.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.pipeline = True
|
|
|
|
"""
|
|
return self.strategy.pipeline
|
|
|
|
@pipeline.setter
|
|
@is_strict_auto
|
|
def pipeline(self, flag):
|
|
if isinstance(flag, bool):
|
|
self.strategy.pipeline = flag
|
|
else:
|
|
print("WARNING: pipeline should have value of bool type")
|
|
|
|
@property
|
|
def pipeline_configs(self):
|
|
"""
|
|
Set pipeline parallelism configurations. In pipeline parallelism,
|
|
different parts of neural networks are running on different GPUS.
|
|
There are Tensor queue buffer between each pair of neighborhood GPUS
|
|
that are responsible for synchronizing hidden Tensor results between
|
|
GPUs. Pipeline parallelism consists of serveral producer-consumer style
|
|
hardware pairs, such as GPU-GPU, CPU-GPU, GPU-XPU. The best way to speedup
|
|
pipeline parallelism is to make the size of Tensor in Tensor queue smaller,
|
|
so that we will have a faster producer for downstream consumers.
|
|
|
|
**Notes**:
|
|
**Detailed arguments for pipeline_configs**
|
|
|
|
**micro_batch**: the number of small batches in each user defined batch
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.pipeline = True
|
|
strategy.pipeline_configs = {"micro_batch": 12}
|
|
|
|
"""
|
|
|
|
return get_msg_dict(self.strategy.pipeline_configs)
|
|
|
|
@pipeline_configs.setter
|
|
@is_strict_auto
|
|
def pipeline_configs(self, configs):
|
|
check_configs_key(self.strategy.pipeline_configs, configs,
|
|
"pipeline_configs")
|
|
assign_configs_value(self.strategy.pipeline_configs, configs)
|
|
|
|
@property
|
|
def localsgd(self):
|
|
"""
|
|
Indicating whether we are using Local SGD training. Default Value: False
|
|
For more details, please refer to
|
|
`Don't Use Large Mini-Batches, Use Local SGD <https://arxiv.org/pdf/1808.07217.pdf>`_.
|
|
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.localsgd = True # by default this is false
|
|
|
|
"""
|
|
return self.strategy.localsgd
|
|
|
|
@localsgd.setter
|
|
@is_strict_auto
|
|
def localsgd(self, flag):
|
|
if isinstance(flag, bool):
|
|
self.strategy.localsgd = flag
|
|
else:
|
|
print("WARNING: localsgd should have value of bool type")
|
|
|
|
@property
|
|
def localsgd_configs(self):
|
|
"""
|
|
Set LocalSGD training configurations. LocalSGD has a configurable
|
|
setting that can be configured through a dict.
|
|
|
|
**Notes**:
|
|
k_steps(int) The local steps for training before parameter synchronization. Default 1.
|
|
begin_step(int) The step of begining training by localsgd. Default 1.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.localsgd = True
|
|
strategy.localsgd_configs = {"k_steps": 4,
|
|
"begin_step": 30}
|
|
"""
|
|
|
|
return get_msg_dict(self.strategy.localsgd_configs)
|
|
|
|
@localsgd_configs.setter
|
|
@is_strict_auto
|
|
def localsgd_configs(self, configs):
|
|
check_configs_key(self.strategy.localsgd_configs, configs,
|
|
"localsgd_configs")
|
|
assign_configs_value(self.strategy.localsgd_configs, configs)
|
|
|
|
@property
|
|
def adaptive_localsgd(self):
|
|
"""
|
|
Indicating whether we are using Adaptive Local SGD training. Default Value: False
|
|
For more details, please refer to `Adaptive Communication Strategies to Achieve
|
|
the Best Error-Runtime Trade-off in Local-Update SGD <https://arxiv.org/pdf/1810.08313.pdf>`_.
|
|
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.adaptive_localsgd = True # by default this is false
|
|
|
|
"""
|
|
return self.strategy.localsgd
|
|
|
|
@adaptive_localsgd.setter
|
|
@is_strict_auto
|
|
def adaptive_localsgd(self, flag):
|
|
if isinstance(flag, bool):
|
|
self.strategy.localsgd = flag
|
|
else:
|
|
print("WARNING: adaptive_localsgd should have value of bool type")
|
|
|
|
@property
|
|
def adaptive_localsgd_configs(self):
|
|
"""
|
|
Set AdaptiveLocalSGD training configurations. AdaptiveLocalSGD has a configurable
|
|
setting that can be configured through a dict.
|
|
|
|
**Notes**:
|
|
init_k_steps(int) The initial steps for training before adaptive localsgd.
|
|
Then, the adaptive localsgd method will modify init_k_steps automatically.
|
|
Default 1.
|
|
begin_step(int) The step of begining training by adaptive localsgd. Default 1.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.adaptive_localsgd = True
|
|
strategy.adaptive_localsgd_configs = {"init_k_steps": 1,
|
|
"begin_step": 30}
|
|
"""
|
|
|
|
return get_msg_dict(self.strategy.adaptive_localsgd_configs)
|
|
|
|
@adaptive_localsgd_configs.setter
|
|
@is_strict_auto
|
|
def adaptive_localsgd_configs(self, configs):
|
|
check_configs_key(self.strategy.adaptive_localsgd_configs, configs,
|
|
"adaptive_localsgd_configs")
|
|
assign_configs_value(self.strategy.adaptive_localsgd_configs, configs)
|
|
|
|
@property
|
|
def dgc(self):
|
|
"""
|
|
Indicating whether we are using Deep Gradient Compression training. For more details, please refer to
|
|
[Deep Gradient Compression](https://arxiv.org/abs/1712.01887).
|
|
|
|
Default Value: False
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.dgc = True # by default this is false
|
|
|
|
"""
|
|
return self.strategy.dgc
|
|
|
|
@dgc.setter
|
|
@is_strict_auto
|
|
def dgc(self, flag):
|
|
if isinstance(flag, bool):
|
|
self.strategy.dgc = flag
|
|
else:
|
|
print("WARNING: dgc should have value of bool type")
|
|
|
|
@property
|
|
def dgc_configs(self):
|
|
"""
|
|
Set Deep Gradient Compression training configurations. In general, dgc has serveral configurable
|
|
settings that can be configured through a dict.
|
|
|
|
**Notes**:
|
|
rampup_begin_step(int): The beginning step from which gradient compression is implemented. Default 0.
|
|
|
|
rampup_step(int): Time steps used in sparsity warm-up periods. Default is 1. \
|
|
For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
|
|
it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. And when reach sparsity array \
|
|
ends, it will use 0.999 then and after.
|
|
|
|
sparsity(list[float]): Get top important element from gradient tensor, the ratio is (1 - sparsity). \
|
|
Default is [0.999]. For example, if the sparsity is [0.99, 0.999], the top [1%, 0.1%] important \
|
|
element will be transmitted.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.dgc = True
|
|
strategy.dgc_configs = {"rampup_begin_step": 1252}
|
|
"""
|
|
return get_msg_dict(self.strategy.dgc_configs)
|
|
|
|
@dgc_configs.setter
|
|
@is_strict_auto
|
|
def dgc_configs(self, configs):
|
|
check_configs_key(self.strategy.dgc_configs, configs, "dgc_configs")
|
|
assign_configs_value(self.strategy.dgc_configs, configs)
|
|
|
|
@property
|
|
def fp16_allreduce(self):
|
|
"""
|
|
Indicating whether we are using fp16 gradient allreduce training
|
|
Default Value: False
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.fp16_allreduce = True # by default this is false
|
|
|
|
"""
|
|
return self.strategy.fp16_allreduce
|
|
|
|
@fp16_allreduce.setter
|
|
@is_strict_auto
|
|
def fp16_allreduce(self, flag):
|
|
if not isinstance(flag, bool):
|
|
raise TypeError('fp16_allreduce must be value of bool type')
|
|
self.strategy.fp16_allreduce = flag
|
|
|
|
@property
|
|
def gradient_merge(self):
|
|
"""
|
|
Gradient Merge, also called as Gradient Accumulation,
|
|
is a strategy for large batch training. With this strategy,
|
|
model parameter will not be updated until user-defined steps.
|
|
For each step, the forward network and the backward network
|
|
will run to calculate the gradient of model parameters.
|
|
For every k step, the optimization network will run,
|
|
applying a specific optimization method (such as SGD, Adam)
|
|
to model parameters.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.gradient_merge = True
|
|
strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
|
|
"""
|
|
return self.strategy.gradient_merge
|
|
|
|
@gradient_merge.setter
|
|
@is_strict_auto
|
|
def gradient_merge(self, flag):
|
|
if isinstance(flag, bool):
|
|
self.strategy.gradient_merge = flag
|
|
else:
|
|
print("WARNING: gradient_merge should have value of bool type")
|
|
|
|
@property
|
|
def gradient_merge_configs(self):
|
|
"""
|
|
the key-value configs of distribute_strategy
|
|
|
|
**Note**:
|
|
k_steps(int): the update period of the parameters.
|
|
|
|
avg(bool): whether to average the gradients of each mini-batch, the default value is `True`
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.gradient_merge = True
|
|
strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
|
|
"""
|
|
return get_msg_dict(self.strategy.gradient_merge_configs)
|
|
|
|
@gradient_merge_configs.setter
|
|
@is_strict_auto
|
|
def gradient_merge_configs(self, configs):
|
|
check_configs_key(self.strategy.gradient_merge_configs, configs,
|
|
"gradient_configs")
|
|
assign_configs_value(self.strategy.gradient_merge_configs, configs)
|
|
|
|
@property
|
|
def lars(self):
|
|
"""
|
|
Set lars configurations. lars is used to deal with the convergence problems when the global
|
|
batch size is larger than 8k. For more details, please refer to
|
|
[Large Batch Training of Convolutional Networks](https://arxiv.org/abs/1708.03888).
|
|
|
|
Default Value: False
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.lars = True # by default this is false
|
|
"""
|
|
return self.strategy.lars
|
|
|
|
@lars.setter
|
|
@is_strict_auto
|
|
def lars(self, flag):
|
|
if isinstance(flag, bool):
|
|
self.strategy.lars = flag
|
|
else:
|
|
print("WARNING: lars should have value of bool type")
|
|
|
|
@property
|
|
def lars_configs(self):
|
|
"""
|
|
Set Lars training configurations.
|
|
|
|
**Notes**:
|
|
**lars_coeff (float)**: trust ratio in lars formula.
|
|
**lars_weight_decay** (float): weight decay coefficient in lars formula.
|
|
**epsilon (float)**: argument is used to avoid potential devision-by-zero
|
|
when compute the local lr;
|
|
**exclude_from_weight_decay ([string])**: is a list of name strings of layers which
|
|
will be exclude from weight decay in lars formula.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.lars = True
|
|
strategy.lars_configs = {
|
|
"lars_coeff": 0.01,
|
|
"lars_weight_decay": 0.0005,
|
|
"epsilon": 0,
|
|
"exclude_from_weight_decay": ['batch_norm', '.b_0']
|
|
}
|
|
"""
|
|
return get_msg_dict(self.strategy.lars_configs)
|
|
|
|
@lars_configs.setter
|
|
@is_strict_auto
|
|
def lars_configs(self, configs):
|
|
check_configs_key(self.strategy.lars_configs, configs, "lars_configs")
|
|
assign_configs_value(self.strategy.lars_configs, configs)
|
|
|
|
@property
|
|
def lamb(self):
|
|
"""
|
|
Set lamb configurations. lamb is used to deal with the convergence problems for large
|
|
batch size training, specially for attention-related model like BERT. For more details,
|
|
please refer to
|
|
[Large Batch Optimization for Deep Learning: Training BERT in 76 minutes](https://arxiv.org/abs/1904.00962).
|
|
|
|
Default Value: False
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.lamb = True # by default this is false
|
|
"""
|
|
|
|
return self.strategy.lamb
|
|
|
|
@lamb.setter
|
|
@is_strict_auto
|
|
def lamb(self, flag):
|
|
if isinstance(flag, bool):
|
|
self.strategy.lamb = flag
|
|
else:
|
|
print("WARNING: lamb should have value of bool type")
|
|
|
|
@property
|
|
def lamb_configs(self):
|
|
"""
|
|
Set Lars training configurations.
|
|
|
|
**Notes**:
|
|
**lamb_weight_decay** (float): weight decay coefficient in lamb formula.
|
|
**exclude_from_weight_decay ([string])**: is a list of name strings of layers which
|
|
will be exclude from weight decay in lamb formula.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.lamb = True
|
|
strategy.lamb_configs = {
|
|
'lamb_weight_decay': 0.01,
|
|
'exclude_from_weight_decay': [],
|
|
}
|
|
"""
|
|
return get_msg_dict(self.strategy.lamb_configs)
|
|
|
|
@lamb_configs.setter
|
|
@is_strict_auto
|
|
def lamb_configs(self, configs):
|
|
check_configs_key(self.strategy.lamb_configs, configs, "lamb_configs")
|
|
assign_configs_value(self.strategy.lamb_configs, configs)
|
|
|
|
@property
|
|
def elastic(self):
|
|
"""
|
|
Indicating whether we want to do current distributed training on clusters with elastic resources.
|
|
Currently, this is configuration is not valid.
|
|
"""
|
|
return self.strategy.elastic
|
|
|
|
@elastic.setter
|
|
@is_strict_auto
|
|
def elastic(self, flag):
|
|
if isinstance(flag, bool):
|
|
self.strategy.elastic = flag
|
|
else:
|
|
print("WARNING: elastic should have value of bool type")
|
|
|
|
@property
|
|
def auto(self):
|
|
"""
|
|
Indicating whether we are using auto-parallel configuration
|
|
This feature is currently an experimental feature. Currently,
|
|
auto-parallelism can be used only when a user does not set any other
|
|
strategy configs except auto. For details, please reference the following
|
|
code example
|
|
Default Value: False
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.auto = True
|
|
|
|
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
|
|
optimizer = fleet.distributed_optimizer(optimizer, strategy)
|
|
"""
|
|
return self.strategy.auto
|
|
|
|
@auto.setter
|
|
def auto(self, flag):
|
|
if isinstance(flag, bool):
|
|
self.strategy.auto = flag
|
|
else:
|
|
print("WARNING: auto should have value of bool type")
|
|
|
|
@property
|
|
def cudnn_exhaustive_search(self):
|
|
"""
|
|
Indicating whether to use exhaustive search method to choose convolution algorithms.
|
|
Exhaustive search attempts all cuDNN algorithms to choose the fastest algorithm.
|
|
This method is time-consuming, the choosed algorithm will be cached for the given layer specifications.
|
|
Once the layer specifications (like batch size, feature map size) are changed, it will search again.
|
|
Default Value: True
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.cudnn_exhaustive_search = False
|
|
|
|
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
|
|
optimizer = fleet.distributed_optimizer(optimizer, strategy)
|
|
"""
|
|
return self.strategy.cudnn_exhaustive_search
|
|
|
|
@cudnn_exhaustive_search.setter
|
|
@is_strict_auto
|
|
def cudnn_exhaustive_search(self, flag):
|
|
if isinstance(flag, bool):
|
|
self.strategy.cudnn_exhaustive_search = flag
|
|
else:
|
|
print(
|
|
"WARNING: cudnn_exhaustive_search should have value of bool type"
|
|
)
|
|
|
|
@property
|
|
def conv_workspace_size_limit(self):
|
|
"""
|
|
The workspace limit size in MB unit for choosing cuDNN convolution algorithms.
|
|
The inner funciton of cuDNN obtain the fastest suited algorithm that fits within this memory limit.
|
|
Usually, large workspace size may lead to choose faster algorithms,
|
|
but significant increasing memory workspace. Users need to trade-off between memory and speed.
|
|
Default Value: 4000
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.conv_workspace_size_limit = 1024
|
|
|
|
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
|
|
optimizer = fleet.distributed_optimizer(optimizer, strategy)
|
|
|
|
"""
|
|
return self.strategy.conv_workspace_size_limit
|
|
|
|
@conv_workspace_size_limit.setter
|
|
@is_strict_auto
|
|
def conv_workspace_size_limit(self, value):
|
|
if isinstance(value, int):
|
|
self.strategy.conv_workspace_size_limit = value
|
|
else:
|
|
print(
|
|
"WARNING: conv_workspace_size_limit should have value of int type"
|
|
)
|
|
|
|
@property
|
|
def cudnn_batchnorm_spatial_persistent(self):
|
|
"""
|
|
Indicates whether to use the mode CUDNN_BATCHNORM_SPATIAL_PERSISTENT function in batchnorm.
|
|
This is only useful in cudnn.
|
|
Default Value: True
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.cudnn_batchnorm_spatial_persistent = True
|
|
|
|
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
|
|
optimizer = fleet.distributed_optimizer(optimizer, strategy)
|
|
|
|
"""
|
|
return self.strategy.cudnn_batchnorm_spatial_persistent
|
|
|
|
@cudnn_batchnorm_spatial_persistent.setter
|
|
@is_strict_auto
|
|
def cudnn_batchnorm_spatial_persistent(self, flag):
|
|
if isinstance(flag, bool):
|
|
self.strategy.cudnn_batchnorm_spatial_persistent = flag
|
|
else:
|
|
print(
|
|
"WARNING: cudnn_batchnorm_spatial_persistent should have value of bool type"
|
|
)
|
|
|
|
def _enable_env(self):
|
|
strategy = self.strategy
|
|
keys = [
|
|
"FLAGS_cudnn_batchnorm_spatial_persistent",
|
|
"FLAGS_conv_workspace_size_limit",
|
|
"FLAGS_cudnn_exhaustive_search",
|
|
"FLAGS_sync_nccl_allreduce",
|
|
"FLAGS_fuse_parameter_memory_size",
|
|
"FLAGS_fuse_parameter_groups_size",
|
|
]
|
|
values = [
|
|
bool(strategy.cudnn_batchnorm_spatial_persistent),
|
|
int(strategy.conv_workspace_size_limit),
|
|
bool(strategy.cudnn_exhaustive_search),
|
|
bool(strategy.sync_nccl_allreduce),
|
|
int(strategy.fuse_grad_size_in_MB),
|
|
int(strategy.fuse_grad_size_in_TFLOPS),
|
|
]
|
|
|
|
for i, key in enumerate(keys):
|
|
if core.globals().is_public(key):
|
|
core.globals()[key] = values[i]
|
|
|
|
def _is_strict_auto(self):
|
|
global non_auto_func_called
|
|
if self.strategy.auto and non_auto_func_called:
|
|
return True
|
|
return False
|
|
|
|
def __repr__(self):
|
|
spacing = 2
|
|
max_k = 38
|
|
max_v = 38
|
|
|
|
length = max_k + max_v + spacing
|
|
|
|
h1_format = " " + "|{{:^{}s}}|\n".format(length)
|
|
h2_format = " " + "|{{:>{}s}}{}{{:^{}s}}|\n".format(max_k, " " *
|
|
spacing, max_v)
|
|
|
|
border = " +" + "".join(["="] * length) + "+"
|
|
line = " +" + "".join(["-"] * length) + "+"
|
|
|
|
draws = border + "\n"
|
|
draws += h1_format.format("")
|
|
draws += h1_format.format("DistributedStrategy Overview")
|
|
draws += h1_format.format("")
|
|
|
|
fields = self.strategy.DESCRIPTOR.fields
|
|
str_res = ""
|
|
|
|
env_draws = line + "\n"
|
|
for f in fields:
|
|
if "build_strategy" in f.name or "execution_strategy" in f.name:
|
|
continue
|
|
if "_configs" in f.name:
|
|
continue
|
|
else:
|
|
if isinstance(getattr(self.strategy, f.name), bool):
|
|
if hasattr(self.strategy, f.name + "_configs"):
|
|
if getattr(self.strategy, f.name):
|
|
draws += border + "\n"
|
|
draws += h1_format.format(
|
|
"{}=True <-> {}_configs".format(f.name, f.name))
|
|
draws += line + "\n"
|
|
my_configs = getattr(self.strategy,
|
|
f.name + "_configs")
|
|
config_fields = my_configs.DESCRIPTOR.fields
|
|
for ff in config_fields:
|
|
if isinstance(
|
|
getattr(my_configs, ff.name),
|
|
google.protobuf.pyext._message.
|
|
RepeatedScalarContainer):
|
|
values = getattr(my_configs, ff.name)
|
|
for i, v in enumerate(values):
|
|
if i == 0:
|
|
draws += h2_format.format(ff.name,
|
|
str(v))
|
|
else:
|
|
draws += h2_format.format("",
|
|
str(v))
|
|
else:
|
|
draws += h2_format.format(
|
|
ff.name,
|
|
str(getattr(my_configs, ff.name)))
|
|
else:
|
|
env_draws += h2_format.format(
|
|
f.name, str(getattr(self.strategy, f.name)))
|
|
else:
|
|
env_draws += h2_format.format(
|
|
f.name, str(getattr(self.strategy, f.name)))
|
|
|
|
result_res = draws + border + "\n" + h1_format.format(
|
|
"Environment Flags, Communication Flags")
|
|
result_res += env_draws
|
|
|
|
build_strategy_str = border + "\n"
|
|
build_strategy_str += h1_format.format("Build Strategy")
|
|
build_strategy_str += line + "\n"
|
|
|
|
fields = self.strategy.build_strategy.DESCRIPTOR.fields
|
|
for f in fields:
|
|
build_strategy_str += h2_format.format(
|
|
f.name, str(getattr(self.strategy.build_strategy, f.name)))
|
|
build_strategy_str += border + "\n"
|
|
|
|
execution_strategy_str = h1_format.format("Execution Strategy")
|
|
execution_strategy_str += line + "\n"
|
|
|
|
fields = self.strategy.execution_strategy.DESCRIPTOR.fields
|
|
for f in fields:
|
|
execution_strategy_str += h2_format.format(
|
|
f.name, str(getattr(self.strategy.execution_strategy, f.name)))
|
|
execution_strategy_str += border + "\n"
|
|
|
|
result_res += build_strategy_str + execution_strategy_str
|
|
return result_res
|