You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/tensorrt/op_teller.cc

199 lines
6.3 KiB

// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/tensorrt/op_teller.h"
#include "paddle/fluid/framework/block_desc.h"
namespace paddle {
namespace framework {
class OpDesc;
} // namespace framework
} // namespace paddle
namespace paddle {
namespace inference {
namespace tensorrt {
// Just tell by the op_types.
struct SimpleOpTypeSetTeller : public Teller {
SimpleOpTypeSetTeller() {
#if IS_TRT_VERSION_GE(5130)
teller_set.insert("relu6");
teller_set.insert("hard_sigmoid");
teller_set.insert("clip");
int8_teller_set.insert("relu6");
int8_teller_set.insert("hard_sigmoid");
int8_teller_set.insert("clip");
#endif
#if IS_TRT_VERSION_GE(6000)
teller_set.insert("fused_embedding_eltwise_layernorm");
teller_set.insert("multihead_matmul");
teller_set.insert("skip_layernorm");
teller_set.insert("slice");
#endif
#if IS_TRT_VERSION_GE(7130)
teller_set.insert("group_norm");
#endif
}
bool operator()(const std::string& op_type, const framework::OpDesc& desc,
bool use_no_calib_int8) override {
if (use_no_calib_int8) {
return int8_teller_set.count(op_type);
} else {
return teller_set.count(op_type);
}
}
private:
// use this set for no calib int8.
std::unordered_set<std::string> int8_teller_set{"mul",
"conv2d",
"conv2d_fusion",
"pool2d",
"relu",
"depthwise_conv2d",
"softmax",
"sigmoid",
"batch_norm",
"elementwise_add",
"leaky_relu",
"fc",
"concat",
"scale",
"elementwise_mul",
"conv2d_transpose",
"hard_swish"};
std::unordered_set<std::string> teller_set{
"mul",
"matmul",
"conv2d",
"conv2d_fusion",
"pool2d",
"relu",
"softmax",
"sigmoid",
"hard_swish",
"depthwise_conv2d",
"batch_norm",
"concat",
"tanh",
"pad",
"elementwise_add",
"elementwise_mul",
"dropout",
"prelu",
"conv2d_transpose",
"leaky_relu",
"fc",
"shuffle_channel",
"swish",
"split",
"instance_norm",
"gelu",
"layer_norm",
"scale",
"stack",
"transpose2",
"transpose",
"flatten2",
"flatten",
};
};
bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
bool with_dynamic_shape) {
const std::string op_type = node->Op()->Type();
const framework::OpDesc desc = *node->Op();
// do not support the op which is labeled the `skip_quant`
if ((desc.HasAttr("namescope") &&
BOOST_GET_CONST(std::string, desc.GetAttr("op_namescope")) ==
"/skip_quant_2/") ||
desc.HasAttr("skip_quant"))
return false;
for (auto& teller : tellers_) {
if (op_type == "pool2d" || op_type == "conv2d" ||
op_type == "depthwise_conv2d" || op_type == "conv2d_transpose") {
std::vector<int> paddings =
BOOST_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
if (paddings.size() > 2) return false;
}
if (op_type == "matmul") {
auto* block = desc.Block();
for (auto& param_name : desc.Inputs()) {
for (auto& var_name : param_name.second) {
auto* var_desc = block->FindVar(var_name);
const auto shape = var_desc->GetShape();
if (shape.size() < 3) {
VLOG(1)
<< "matmul op dims < 3 not supported in tensorrt, but got dims "
<< shape.size() << ", so jump it.";
return false;
}
}
}
}
if (op_type == "group_norm") {
if (!with_dynamic_shape) return false;
bool has_attrs = (desc.HasAttr("epsilon") && desc.HasAttr("groups"));
if (has_attrs == false) return false;
auto registry = GetPluginRegistry();
if (registry == nullptr) return false;
}
if (op_type == "concat") {
if (!desc.HasAttr("axis")) {
return false;
} else {
int axis = BOOST_GET_CONST(int, desc.GetAttr("axis"));
if (with_dynamic_shape) {
if (axis < 0) return false;
} else {
if (axis <= 0) return false;
}
}
}
if (op_type == "transpose2" || op_type == "transpose") {
if (!desc.HasAttr("axis")) {
return false;
} else {
std::vector<int> axis =
BOOST_GET_CONST(std::vector<int>, desc.GetAttr("axis"));
if (!with_dynamic_shape && axis[0] != 0) return false;
if (axis.size() >= nvinfer1::Dims::MAX_DIMS) return false;
}
}
if (op_type == "flatten2" || op_type == "flatten") {
// flatten doesn't support dynamic shape currently
if (!desc.HasAttr("axis")) {
return false;
} else {
if (with_dynamic_shape) return false;
int axis = BOOST_GET_CONST(int, desc.GetAttr("axis"));
if (axis != 1) return false;
}
}
if ((*teller)(op_type, desc, use_no_calib_int8)) return true;
}
return false;
}
OpTeller::OpTeller() { tellers_.emplace_back(new SimpleOpTypeSetTeller); }
} // namespace tensorrt
} // namespace inference
} // namespace paddle