You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/pybind/imperative.cc

610 lines
25 KiB

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/pybind/imperative.h"
#include <Python.h>
#include <pybind11/chrono.h>
#include <pybind11/complex.h>
#include <pybind11/functional.h>
#include <pybind11/stl.h>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "paddle/fluid/imperative/backward_strategy.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/nccl_context.h"
#include "paddle/fluid/imperative/profiler.h"
#include "paddle/fluid/imperative/tracer.h"
#include "paddle/fluid/imperative/type_defs.h"
#include "paddle/fluid/pybind/pybind_boost_headers.h"
#include "paddle/fluid/pybind/tensor_py.h"
namespace paddle {
namespace pybind {
namespace py = ::pybind11;
class Layer : public imperative::Layer {
public:
using imperative::Layer::Layer; // Inherit constructors
std::vector<std::shared_ptr<imperative::VarBase>> Forward(
const std::vector<std::shared_ptr<imperative::VarBase>> &inputs)
override {
PYBIND11_OVERLOAD(std::vector<std::shared_ptr<imperative::VarBase>>, Layer,
Forward, inputs); // NOLINT
}
};
static const platform::Place PyObjectToPlace(const py::object &place_obj) {
if (py::isinstance<platform::CPUPlace>(place_obj)) {
return place_obj.cast<platform::CPUPlace>();
} else if (py::isinstance<platform::CUDAPlace>(place_obj)) {
return place_obj.cast<platform::CUDAPlace>();
} else if (py::isinstance<platform::CUDAPinnedPlace>(place_obj)) {
return place_obj.cast<platform::CUDAPinnedPlace>();
} else {
PADDLE_THROW(platform::errors::InvalidArgument(
"Place should be one of CPUPlace/CUDAPlace/CUDAPinnedPlace"));
}
}
static void InitTensorForVarBase(imperative::VarBase *self,
const py::array &array,
const platform::Place place,
bool persistable = false,
bool zero_copy = false,
std::string name = "") {
if (name == "") {
name = imperative::GetCurrentTracer()->GenerateUniqueName("generated_var");
}
new (self) imperative::VarBase(name);
auto *tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
if (platform::is_cpu_place(place)) {
SetTensorFromPyArray<platform::CPUPlace>(
tensor, array, boost::get<platform::CPUPlace>(place), zero_copy);
} else if (platform::is_gpu_place(place)) {
SetTensorFromPyArray<platform::CUDAPlace>(
tensor, array, boost::get<platform::CUDAPlace>(place), zero_copy);
} else if (platform::is_cuda_pinned_place(place)) {
SetTensorFromPyArray<platform::CUDAPinnedPlace>(
tensor, array, boost::get<platform::CUDAPinnedPlace>(place), zero_copy);
} else {
PADDLE_THROW(platform::errors::InvalidArgument(
"Place should be one of CPUPlace/CUDAPlace/CUDAPinnedPlace"));
}
self->SetPersistable(persistable);
self->SetType(framework::proto::VarType::LOD_TENSOR);
self->SetDataType(tensor->type());
}
static void InitVarBaseFromNumpyWithKwargs(imperative::VarBase *self,
const py::kwargs &kwargs) {
PADDLE_ENFORCE_EQ(
kwargs.contains("value"), true,
platform::errors::InvalidArgument("Missing argument: value"));
auto persistable = kwargs.contains("persistable")
? kwargs["persistable"].cast<bool>()
: false;
auto array = kwargs.contains("value") ? kwargs["value"].cast<py::array>()
: py::array();
auto zero_copy =
kwargs.contains("zero_copy") ? kwargs["zero_copy"].cast<bool>() : false;
auto name = kwargs.contains("name") ? kwargs["name"].cast<std::string>() : "";
auto default_place = imperative::GetCurrentTracer()->ExpectedPlace();
auto place = kwargs.contains("place") ? PyObjectToPlace(kwargs["place"])
: default_place;
InitTensorForVarBase(self, array, place, persistable, zero_copy, name);
}
template <typename P>
static void InitVarBaseFromNumpyWithArg(imperative::VarBase *self,
const py::array &array, const P &place,
bool persistable = false,
bool zero_copy = false,
std::string name = "") {
// 0: self, 1: value, 2: place, 3: persistable, 4: zero_copy, 5: name
if (name == "") {
name = imperative::GetCurrentTracer()->GenerateUniqueName("generated_var");
}
new (self) imperative::VarBase(name);
self->SetPersistable(persistable);
auto *tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
SetTensorFromPyArray<P>(tensor, array, place, zero_copy);
self->SetType(framework::proto::VarType::LOD_TENSOR);
self->SetDataType(tensor->type());
}
static void InitVarBaseFromNumpyWithArgDefault(imperative::VarBase *self,
const py::array &array) {
auto place = imperative::GetCurrentTracer()->ExpectedPlace();
InitTensorForVarBase(self, array, place);
}
static std::string GetTypeName(const imperative::VarBase &var) {
if (var.Type() == framework::proto::VarType::RAW) {
return "RAW";
} else if (!var.Var().IsInitialized()) {
return "nullptr";
} else {
return framework::ToTypeName(var.Var().Type());
}
}
using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;
template <typename T>
static T PyObjectCast(PyObject *obj) {
try {
return py::cast<T>(py::handle(obj));
} catch (py::cast_error &) {
PADDLE_THROW("Python object is not type of %s", typeid(T).name());
}
}
// NOTE(zjl): py::handle is a very light wrapper of PyObject *.
// Unlike py::object, py::handle does not change reference count of PyObject *.
static std::vector<std::shared_ptr<imperative::VarBase>>
GetVarBaseListFromPyHandle(const py::handle &handle) {
PyObject *py_obj = handle.ptr(); // get underlying PyObject
// Python None is not nullptr in C++!
if (!py_obj || py_obj == Py_None) {
return {};
}
std::vector<std::shared_ptr<imperative::VarBase>> result;
if (PyList_Check(py_obj)) { // List of VarBase
size_t len = PyList_GET_SIZE(py_obj);
result.reserve(len);
for (size_t i = 0; i < len; ++i) {
PyObject *py_ivar = PyList_GET_ITEM(py_obj, i);
PADDLE_ENFORCE_NOT_NULL(
py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
result.emplace_back(
PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
}
} else if (PyTuple_Check(py_obj)) { // Tuple of VarBase
size_t len = PyTuple_GET_SIZE(py_obj);
result.reserve(len);
for (size_t i = 0; i < len; ++i) {
PyObject *py_ivar = PyTuple_GET_ITEM(py_obj, i);
PADDLE_ENFORCE_NOT_NULL(
py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
result.emplace_back(
PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
}
} else { // VarBase
result.emplace_back(
PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
}
return result;
}
static imperative::NameVarBaseMap ConvertToNameVarBaseMap(
const PyNameVarBaseMap &map) {
imperative::NameVarBaseMap result;
for (auto &pair : map) {
auto var_vec = GetVarBaseListFromPyHandle(pair.second);
if (!var_vec.empty()) {
result.emplace(pair.first, std::move(var_vec));
}
}
PADDLE_ENFORCE_EQ(PyErr_Occurred() == nullptr, true,
py::str(py::handle(PyErr_Occurred())));
return result;
}
// Bind Methods
void BindImperative(py::module *m_ptr) {
auto &m = *m_ptr;
py::class_<imperative::detail::BackwardStrategy> backward_strategy(
m, "BackwardStrategy", R"DOC(
BackwardStrategy is a descriptor of how to run the backward process.
**Note**:
**This API is only avaliable in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **Mode**
Attribute:
**sort_sum_gradient**:
If framework will sum the gradient by the reverse order of trace. eg. x_var ( :ref:`api_guide_Variable` ) will be the input of multiple OP such as :ref:`api_fluid_layers_scale` , this attr will decide if framework will sum gradient of `x_var` by the reverse order.
By Default: False
Examples:
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
x = np.ones([2, 2], np.float32)
with fluid.dygraph.guard():
x_var = fluid.dygraph.to_variable(x)
sums_inputs = []
# x_var will be multi-scales' input here
for _ in range(10):
sums_inputs.append(fluid.layers.scale(x_var))
ret2 = fluid.layers.sums(sums_inputs)
loss2 = fluid.layers.reduce_sum(ret2)
backward_strategy = fluid.dygraph.BackwardStrategy()
backward_strategy.sort_sum_gradient = True
loss2.backward(backward_strategy)
)DOC");
backward_strategy.def(py::init())
.def_property("sort_sum_gradient",
[](const imperative::detail::BackwardStrategy &self) {
return self.sorted_sum_gradient_;
},
[](imperative::detail::BackwardStrategy &self,
bool sorted_sum_gradient) {
self.sorted_sum_gradient_ = sorted_sum_gradient;
});
m.def("start_imperative_gperf_profiler",
[]() { imperative::StartProfile(); });
m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });
m.def("_is_dygraph_debug_enabled",
[]() { return imperative::IsDebugEnabled(); });
m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); });
m.def("_switch_tracer",
[](const std::shared_ptr<imperative::Tracer> &tracer) {
imperative::SetCurrentTracer(tracer);
});
py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>>(
m, "VarBase",
R"DOC()DOC")
.def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
.def("__init__",
[](imperative::VarBase &self, framework::proto::VarType::Type dtype,
const std::vector<int> &dims, const py::handle &name,
framework::proto::VarType::Type type, bool persistable) {
std::string act_name = "";
if (!name.ptr() || name.ptr() == Py_None) {
act_name = imperative::GetCurrentTracer()->GenerateUniqueName(
"generated_var");
} else {
act_name = name.cast<std::string>();
}
new (&self) imperative::VarBase(act_name);
self.SetPersistable(persistable);
self.SetType(type);
self.SetDataType(dtype);
if (type == framework::proto::VarType::LOD_TENSOR) {
auto *tensor =
self.MutableVar()->GetMutable<framework::LoDTensor>();
tensor->Resize(framework::make_ddim(dims));
}
})
.def("__init__", &InitVarBaseFromNumpyWithArg<platform::CPUPlace>,
py::arg("value"), py::arg("place"), py::arg("persistable") = false,
py::arg("zero_copy") = false, py::arg("name") = "")
.def("__init__", &InitVarBaseFromNumpyWithArg<platform::CUDAPlace>,
py::arg("value"), py::arg("place"), py::arg("persistable") = false,
py::arg("zero_copy") = false, py::arg("name") = "")
.def("__init__", &InitVarBaseFromNumpyWithArg<platform::CUDAPinnedPlace>,
py::arg("value"), py::arg("place"), py::arg("persistable") = false,
py::arg("zero_copy") = false, py::arg("name") = "")
.def("__init__", &InitVarBaseFromNumpyWithArgDefault, py::arg("value"))
.def("__init__", &InitVarBaseFromNumpyWithKwargs)
.def("numpy",
[](imperative::VarBase &self) -> py::array {
const auto &tensor =
self.MutableVar()->Get<framework::LoDTensor>();
PADDLE_ENFORCE_EQ(
tensor.IsInitialized(), true,
platform::errors::InvalidArgument(
"%s is Empty, Please check if it has no data in",
self.Name()));
return TensorToPyArray(tensor, true);
},
R"DOC(
**Notes**:
**This API is ONLY avaliable in Dygraph mode**
Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
Returns:
ndarray: The numpy value of current Variable.
Returns type:
ndarray: dtype is same as current Variable
Examples:
.. code-block:: python
import paddle.fluid as fluid
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph import FC
import numpy as np
data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
with fluid.dygraph.guard():
fc = FC("fc", 64, num_flatten_dims=2)
data = to_variable(data)
x = fc(data)
print(x.numpy())
)DOC")
.def("detach",
[](const imperative::VarBase &self) {
const auto &tensor = self.Var().Get<framework::LoDTensor>();
PADDLE_ENFORCE_EQ(tensor.IsInitialized(), true,
platform::errors::InvalidArgument(
"%s has not been initialized", self.Name()));
return self.NewVarBase(tensor.place(), false);
},
py::return_value_policy::copy, R"DOC(
**Notes**:
**This API is ONLY avaliable in Dygraph mode**
Returns a new Variable, detached from the current graph.
Returns:
( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
Examples:
.. code-block:: python
import paddle.fluid as fluid
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph import FC
import numpy as np
data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
with fluid.dygraph.guard():
fc = FC("fc", 64, num_flatten_dims=2)
data = to_variable(data)
x = fc(data)
y = x.detach()
)DOC")
.def("clear_gradient", &imperative::VarBase::ClearGradient, R"DOC(
**Notes**:
**1. This API is ONLY avaliable in Dygraph mode**
**2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
Clear (set to ``0`` ) the Gradient of Current Variable
Returns: None
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
x = np.ones([2, 2], np.float32)
with fluid.dygraph.guard():
inputs2 = []
for _ in range(10):
tmp = fluid.dygraph.base.to_variable(x)
tmp.stop_gradient=False
inputs2.append(tmp)
ret2 = fluid.layers.sums(inputs2)
loss2 = fluid.layers.reduce_sum(ret2)
backward_strategy = fluid.dygraph.BackwardStrategy()
backward_strategy.sort_sum_gradient = True
loss2.backward(backward_strategy)
print(loss2.gradient())
loss2.clear_gradient()
print("After clear {}".format(loss2.gradient()))
)DOC")
.def("_run_backward",
[](imperative::VarBase &self,
const imperative::detail::BackwardStrategy &bckst,
const imperative::Tracer &tracer) {
// TODO(jiabin): when we impl more backward execution we can select
// them
imperative::Engine *engine = tracer.GetDefaultEngine();
VLOG(3) << "Start backward";
engine->Init(&self, bckst);
engine->Execute();
VLOG(3) << "Finish backward";
},
py::call_guard<py::gil_scoped_release>())
.def("_grad_name", &imperative::VarBase::GradVarName)
.def("_grad_value",
[](imperative::VarBase &self) {
return self.MutableGradVar()->Get<framework::LoDTensor>();
},
py::return_value_policy::reference)
.def("_grad_ivar",
[](const imperative::VarBase &self) {
auto &grad_var = self.GradVarBase();
if (grad_var && grad_var->Var().IsInitialized()) {
auto *tensor =
grad_var->MutableVar()->IsType<framework::LoDTensor>()
? grad_var->MutableVar()
->GetMutable<framework::LoDTensor>()
: grad_var->MutableVar()
->GetMutable<framework::SelectedRows>()
->mutable_value();
if (tensor->IsInitialized()) {
return grad_var;
}
}
return std::shared_ptr<imperative::VarBase>(nullptr);
},
py::return_value_policy::copy)
.def("_copy_to",
[](const imperative::VarBase &self, const platform::CPUPlace &place,
bool blocking) { return self.NewVarBase(place, blocking); },
py::return_value_policy::copy)
.def("_copy_to",
[](const imperative::VarBase &self, const platform::CUDAPlace &place,
bool blocking) { return self.NewVarBase(place, blocking); },
py::return_value_policy::copy)
.def("value", [](imperative::VarBase &self) { return self.MutableVar(); },
py::return_value_policy::reference)
.def_property("name", &imperative::VarBase::Name,
&imperative::VarBase::SetName)
.def_property("stop_gradient",
&imperative::VarBase::OverridedStopGradient,
&imperative::VarBase::SetOverridedStopGradient)
.def_property("persistable", &imperative::VarBase::Persistable,
&imperative::VarBase::SetPersistable)
.def_property_readonly(
"shape",
[](imperative::VarBase &self) {
if (self.Var().IsType<framework::LoDTensor>()) {
return framework::vectorize<int>(
self.Var().Get<framework::LoDTensor>().dims());
} else if (self.Var().IsType<framework::SelectedRows>()) {
return framework::vectorize<int>(
self.Var().Get<framework::SelectedRows>().value().dims());
} else {
VLOG(2) << "It is meaningless to get shape of variable type "
<< GetTypeName(self);
return std::vector<int>();
}
})
.def_property_readonly("type", &imperative::VarBase::Type)
.def_property_readonly("dtype", &imperative::VarBase::DataType);
py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
layer.def(py::init<>())
.def("forward",
[](imperative::Layer &self,
const std::vector<std::shared_ptr<imperative::VarBase>> &inputs) {
return self.Forward(inputs);
});
py::class_<imperative::jit::ProgramDescTracer>(m, "ProgramDescTracer", "")
.def("create_program_desc",
&imperative::jit::ProgramDescTracer::CreateProgramDesc)
.def("reset", &imperative::jit::ProgramDescTracer::Reset);
py::class_<imperative::Tracer, std::shared_ptr<imperative::Tracer>>(
m, "Tracer",
R"DOC()DOC")
.def("__init__",
[](imperative::Tracer &self) { new (&self) imperative::Tracer(); })
.def_property("_enable_program_desc_tracing",
&imperative::Tracer::IsProgramDescTracingEnabled,
&imperative::Tracer::SetEnableProgramDescTracing)
.def_property("_train_mode", &imperative::Tracer::NoGrad,
&imperative::Tracer::SetNoGrad)
.def_property(
"_expected_place",
[](const imperative::Tracer &self) -> py::object {
return py::cast(self.ExpectedPlace());
},
[](imperative::Tracer &self, const py::object &obj) {
if (py::isinstance<platform::CUDAPlace>(obj)) {
auto p = obj.cast<platform::CUDAPlace *>();
self.SetExpectedPlace<platform::CUDAPlace>(*p);
} else if (py::isinstance<platform::CPUPlace>(obj)) {
auto p = obj.cast<platform::CPUPlace *>();
self.SetExpectedPlace<platform::CPUPlace>(*p);
} else if (py::isinstance<platform::CUDAPinnedPlace>(obj)) {
auto p = obj.cast<platform::CUDAPinnedPlace *>();
self.SetExpectedPlace<platform::CUDAPinnedPlace>(*p);
} else {
PADDLE_THROW(
"Incompatible Place Type: supports CUDAPlace, CPUPlace, "
"CUDAPinnedPlace, "
"but got Unknown Type!");
}
})
.def("_get_program_desc_tracer",
&imperative::Tracer::GetProgramDescTracer,
py::return_value_policy::reference)
.def("trace",
[](imperative::Tracer &self, const std::string &type,
const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
framework::AttributeMap attrs, const platform::CUDAPlace &place,
bool trace_backward) {
auto ins_map = ConvertToNameVarBaseMap(ins);
auto outs_map = ConvertToNameVarBaseMap(outs);
{
py::gil_scoped_release release;
self.TraceOp(type, std::move(ins_map), std::move(outs_map),
std::move(attrs), place, trace_backward);
}
})
.def("trace",
[](imperative::Tracer &self, const std::string &type,
const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
framework::AttributeMap attrs, const platform::CPUPlace &place,
bool trace_backward) {
auto ins_map = ConvertToNameVarBaseMap(ins);
auto outs_map = ConvertToNameVarBaseMap(outs);
{
py::gil_scoped_release release;
self.TraceOp(type, std::move(ins_map), std::move(outs_map),
std::move(attrs), place, trace_backward);
}
});
// define parallel context
py::class_<imperative::ParallelStrategy> parallel_strategy(
m, "ParallelStrategy", "");
parallel_strategy.def(py::init())
.def_property(
"nranks",
[](const imperative::ParallelStrategy &self) { return self.nranks_; },
[](imperative::ParallelStrategy &self, int nranks) {
self.nranks_ = nranks;
})
.def_property("local_rank",
[](const imperative::ParallelStrategy &self) {
return self.local_rank_;
},
[](imperative::ParallelStrategy &self, int local_rank) {
self.local_rank_ = local_rank;
})
.def_property(
"trainer_endpoints",
[](const imperative::ParallelStrategy &self) {
return self.trainer_endpoints_;
},
[](imperative::ParallelStrategy &self, std::vector<std::string> eps) {
self.trainer_endpoints_ = eps;
})
.def_property("current_endpoint",
[](const imperative::ParallelStrategy &self) {
return self.current_endpoint_;
},
[](imperative::ParallelStrategy &self,
const std::string &ep) { self.current_endpoint_ = ep; });
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
py::class_<imperative::NCCLParallelContext> nccl_ctx(m,
"NCCLParallelContext");
nccl_ctx
.def(py::init<const imperative::ParallelStrategy &,
const platform::CUDAPlace &>())
.def("init", [](imperative::NCCLParallelContext &self) { self.Init(); });
#endif
}
} // namespace pybind
} // namespace paddle