You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
137 lines
4.7 KiB
137 lines
4.7 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/framework/operator.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class ElementwiseOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
using Tensor = framework::Tensor;
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of elementwise op should not be null");
|
|
PADDLE_ENFORCE(ctx->HasInput("Y"),
|
|
"Input(Y) of elementwise op should not be null");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of elementwise op should not be null.");
|
|
|
|
auto x_dim = ctx->GetInputDim("X");
|
|
auto y_dim = ctx->GetInputDim("Y");
|
|
PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(),
|
|
"Rank of first input must >= rank of second input.");
|
|
ctx->SetOutputDim("Out", x_dim);
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
};
|
|
|
|
class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
ElementwiseOpMaker(framework::OpProto* proto,
|
|
framework::OpAttrChecker* op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "(Tensor) The first input tensor of elementwise op");
|
|
AddInput("Y", "(Tensor) The second input tensor of elementwise op");
|
|
AddOutput("Out", "The output of elementwise op");
|
|
AddAttr<int>("axis",
|
|
"(int, default -1) The starting dimension index "
|
|
"for broadcasting Y onto X")
|
|
.SetDefault(-1)
|
|
.EqualGreaterThan(-1);
|
|
comment_ = R"DOC(
|
|
Limited Elementwise {name} Operator.
|
|
|
|
The equation is:
|
|
|
|
{equation}
|
|
|
|
X is a tensor of any dimension and the dimensions of tensor Y must be smaller than
|
|
or equal to the dimensions of X.
|
|
|
|
There are two cases for this operator:
|
|
1. The shape of Y is same with X;
|
|
2. The shape of Y is a subset of X.
|
|
|
|
For case 2:
|
|
Y will be broadcasted to match the shape of X and axis should be
|
|
the starting dimension index for broadcasting Y onto X.
|
|
|
|
example:
|
|
shape(X) = (2, 3, 4, 5), shape(Y) = (,)
|
|
shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
|
|
shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
|
|
shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
|
|
shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
|
|
|
|
Both the input X and Y can carry the LoD (Level of Details) information,
|
|
or not. But the output only shares the LoD information with input X.
|
|
|
|
)DOC";
|
|
AddComment(comment_);
|
|
}
|
|
|
|
protected:
|
|
std::string comment_;
|
|
|
|
void Replace(std::string& src, std::string from, std::string to) {
|
|
std::size_t len_from = std::strlen(from.c_str());
|
|
std::size_t len_to = std::strlen(to.c_str());
|
|
for (std::size_t pos = src.find(from); pos != std::string::npos;
|
|
pos = src.find(from, pos + len_to)) {
|
|
src.replace(pos, len_from, to);
|
|
}
|
|
}
|
|
|
|
void SetComment(std::string name, std::string equation) {
|
|
Replace(comment_, "{name}", name);
|
|
Replace(comment_, "{equation}", equation);
|
|
}
|
|
};
|
|
|
|
class ElementwiseOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
using Tensor = framework::Tensor;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
|
|
PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
"Input(Out@GRAD) should not be null");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto y_dims = ctx->GetInputDim("Y");
|
|
auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
|
|
|
|
PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
|
|
"Rank of first input must >= rank of second input.");
|
|
|
|
auto x_grad_name = framework::GradVarName("X");
|
|
auto y_grad_name = framework::GradVarName("Y");
|
|
if (ctx->HasOutput(x_grad_name)) {
|
|
ctx->SetOutputDim(x_grad_name, x_dims);
|
|
}
|
|
if (ctx->HasOutput(y_grad_name)) {
|
|
ctx->SetOutputDim(y_grad_name, y_dims);
|
|
}
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|