You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
124 lines
4.4 KiB
124 lines
4.4 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include "paddle/framework/eigen.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
template <typename T, int MajorType = Eigen::RowMajor,
|
|
typename IndexType = Eigen::DenseIndex>
|
|
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
|
|
template <typename T, int MajorType = Eigen::RowMajor,
|
|
typename IndexType = Eigen::DenseIndex>
|
|
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
|
|
|
|
template <typename Place, typename T>
|
|
class SquaredL2DistanceKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto* in0 = context.Input<Tensor>("X");
|
|
auto* in1 = context.Input<Tensor>("Y");
|
|
auto* out0 = context.Output<Tensor>("sub_result");
|
|
auto* out1 = context.Output<Tensor>("Out");
|
|
|
|
auto in0_dims = in0->dims();
|
|
auto in1_dims = in1->dims();
|
|
|
|
int cols = in0->numel() / in0_dims[0];
|
|
// reduce dimensions except the first
|
|
auto x =
|
|
EigenMatrix<T>::From(*in0, framework::make_ddim({in0_dims[0], cols}));
|
|
auto y =
|
|
EigenMatrix<T>::From(*in1, framework::make_ddim({in1_dims[0], cols}));
|
|
|
|
out0->mutable_data<T>(context.GetPlace());
|
|
out1->mutable_data<T>(context.GetPlace());
|
|
auto sub_result = EigenMatrix<T>::From(*out0);
|
|
auto z = EigenVector<T>::Flatten(*out1);
|
|
|
|
auto place = context.GetEigenDevice<Place>();
|
|
auto x_dims = x.dimensions();
|
|
auto y_dims = y.dimensions();
|
|
// buffer the substraction result
|
|
if (y_dims[0] == 1 && x_dims[0] > y_dims[0]) {
|
|
sub_result.device(place) =
|
|
x -
|
|
y.broadcast(Eigen::array<int, 2>({{static_cast<int>(x_dims[0]), 1}}));
|
|
} else {
|
|
sub_result.device(place) = x - y;
|
|
}
|
|
auto sub_res_pow2 = sub_result * sub_result;
|
|
z.device(place) = sub_res_pow2.sum(Eigen::array<int, 1>({{1}}));
|
|
}
|
|
};
|
|
|
|
template <typename Place, typename T>
|
|
class SquaredL2DistanceGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto* in0 = context.Input<Tensor>("sub_result");
|
|
auto* in1 = context.Input<Tensor>(framework::GradVarName("Out"));
|
|
auto* x_g = context.Output<Tensor>(framework::GradVarName("X"));
|
|
auto* y_g = context.Output<Tensor>(framework::GradVarName("Y"));
|
|
|
|
auto sub_result = EigenMatrix<T>::From(*in0);
|
|
auto out_grad = EigenMatrix<T>::From(*in1);
|
|
|
|
auto x_dims = x_g->dims();
|
|
auto y_dims = y_g->dims();
|
|
|
|
int cols = x_g->numel() / x_dims[0];
|
|
// calculate gradient
|
|
auto grad_mat = 2 *
|
|
(out_grad.broadcast(Eigen::array<int, 2>({{1, cols}}))) *
|
|
sub_result;
|
|
|
|
// propagate back to input
|
|
auto eigen_place = context.GetEigenDevice<Place>();
|
|
if (x_g) {
|
|
x_g->mutable_data<T>(context.GetPlace());
|
|
// eigen matrix
|
|
auto x_grad =
|
|
EigenMatrix<T>::From(*x_g, framework::make_ddim({x_dims[0], cols}));
|
|
// dimensions are same with subResult
|
|
x_grad.device(eigen_place) = grad_mat;
|
|
}
|
|
|
|
if (y_g) {
|
|
y_g->mutable_data<T>(context.GetPlace());
|
|
|
|
PADDLE_ENFORCE_GE(sub_result.dimensions()[0], y_dims[0],
|
|
"First dimension of gradient must be greater or "
|
|
"equal than first dimension of target.");
|
|
|
|
if (sub_result.dimensions()[0] == y_dims[0]) {
|
|
auto y_grad =
|
|
EigenMatrix<T>::From(*y_g, framework::make_ddim({y_dims[0], cols}));
|
|
y_grad.device(eigen_place) = -1 * grad_mat;
|
|
} else {
|
|
auto col_sum_res = -1 * (grad_mat.sum(Eigen::array<int, 1>({{0}})));
|
|
auto y_grad = EigenVector<T>::Flatten(*y_g);
|
|
y_grad.device(eigen_place) = col_sum_res;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|