You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
166 lines
6.3 KiB
166 lines
6.3 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/roi_pool_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
static constexpr int kROISize = 5;
|
|
|
|
class ROIPoolOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of ROIPoolOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("ROIs"),
|
|
"Input(ROIs) of ROIPoolOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of ROIPoolOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Argmax"),
|
|
"Output(Argmax) of ROIPoolOp should not be null.");
|
|
auto input_dims = ctx->GetInputDim("X");
|
|
auto rois_dims = ctx->GetInputDim("ROIs");
|
|
|
|
PADDLE_ENFORCE(input_dims.size() == 4,
|
|
"The format of input tensor is NCHW.");
|
|
PADDLE_ENFORCE(rois_dims.size() == 2,
|
|
"ROIs should be a 2-D tensor of shape (num_rois, 5)"
|
|
"given as [[batch_id, x1, y1, x2, y2], …].");
|
|
PADDLE_ENFORCE(rois_dims[1] == kROISize,
|
|
"ROIs should be a 2-D tensor of shape (num_rois, 5)"
|
|
"given as [[batch_id, x1, y1, x2, y2], …].");
|
|
|
|
int pooled_height = ctx->Attrs().Get<int>("pooled_height");
|
|
int pooled_width = ctx->Attrs().Get<int>("pooled_width");
|
|
float spatial_scale = ctx->Attrs().Get<float>("spatial_scale");
|
|
|
|
PADDLE_ENFORCE_GT(pooled_height, 0,
|
|
"The pooled output height must greater than 0");
|
|
PADDLE_ENFORCE_GT(pooled_width, 0,
|
|
"The pooled output width must greater than 0");
|
|
PADDLE_ENFORCE_GT(spatial_scale, 0.0f,
|
|
"The spatial scale must greater than 0");
|
|
|
|
auto out_dims = input_dims;
|
|
out_dims[0] = rois_dims[0];
|
|
out_dims[1] = input_dims[1];
|
|
out_dims[2] = pooled_height;
|
|
out_dims[3] = pooled_width;
|
|
|
|
ctx->SetOutputDim("Out", out_dims);
|
|
ctx->SetOutputDim("Argmax", out_dims);
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetActualKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class ROIPoolGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
"The gradient of Out should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName("X")),
|
|
"The gradient of X should not be null.");
|
|
ctx->SetOutputsDim(framework::GradVarName("X"), ctx->GetInputsDim("X"));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetActualKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class ROIPoolOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
ROIPoolOpMaker(OpProto* proto, OpAttrChecker* op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X",
|
|
"(Tensor), "
|
|
"the input of ROIPoolOp. "
|
|
"The format of input tensor is NCHW. Where N is batch size, "
|
|
"C is the number of input channels, "
|
|
"H is the height of the feature, and "
|
|
"W is the width of the feature.");
|
|
AddInput("ROIs",
|
|
"(Tensor), "
|
|
"ROIs (Regions of Interest) to pool over. "
|
|
"should be a 2-D tensor of shape (num_rois, 5)"
|
|
"given as [[batch_id, x1, y1, x2, y2], …]. "
|
|
"Where batch_id is the id of the data, "
|
|
"(x1, y1) is the top left coordinates, and "
|
|
"(x2, y2) is the bottom right coordinates.");
|
|
AddOutput("Out",
|
|
"(Tensor), "
|
|
"The output of ROIPoolOp is a 4-D tensor with shape "
|
|
"(num_rois, channels, pooled_h, pooled_w).");
|
|
AddOutput("Argmax",
|
|
"(Tensor), "
|
|
"Argmaxes corresponding to indices in X used "
|
|
"for gradient computation. Only output "
|
|
"if arg “is_test” is false.")
|
|
.AsIntermediate();
|
|
AddAttr<float>("spatial_scale",
|
|
"(float, default 1.0), "
|
|
"Multiplicative spatial scale factor "
|
|
"to translate ROI coords from their input scale "
|
|
"to the scale used when pooling.")
|
|
.SetDefault(1.0);
|
|
AddAttr<int>("pooled_height",
|
|
"(int, default 1), "
|
|
"The pooled output height.")
|
|
.SetDefault(1);
|
|
AddAttr<int>("pooled_width",
|
|
"(int, default 1), "
|
|
"The pooled output width.")
|
|
.SetDefault(1);
|
|
AddComment(R"DOC(
|
|
ROIPool operator
|
|
|
|
ROI Pooling for Faster-RCNN. The link below is a further introduction:
|
|
https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP(roi_pool, ops::ROIPoolOp, ops::ROIPoolOpMaker, roi_pool_grad,
|
|
ops::ROIPoolGradOp);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
roi_pool,
|
|
ops::CPUROIPoolOpKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::CPUROIPoolOpKernel<paddle::platform::CPUDeviceContext, double>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
roi_pool_grad,
|
|
ops::CPUROIPoolGradOpKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::CPUROIPoolOpKernel<paddle::platform::CPUDeviceContext, double>);
|